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CHAPTER 1

INTRODUCTION

As systems become more and more complex, the need for good fault
diagnostic procedures beccmes more obvious., In recent years much work
has been done on the fault analysis of digita}. circuits, primarily
because the growth in the size of these circuits has necessitated good
fault diagnostic tests. The two state nature(™1" or "0") of digital
circuits has also made them more amenable to the development of
reasonably simple and reliable test procedures. In contrast, research
on fault diagnostic procedures for analog circuits has not been as
fruitful, nor have the pressures to develop good fault diagnostic tests
for analog circuits been as great due to their relatively small number
of components in comparison with digital systems.

Presently there is a great interest in the automatic testing and
fault analysis of electrical circuits because of the availability of
low-cost computer systems. This report addresses itself only to the
analog circuit testing probleam.

It has been difficult to obtain a solution to the fault analysls
problem because (a) usually the restriction is imposed that connections
cannot be broken which means that currents cannot be measured reliably ,
and (b) the responses in a circuit are nonlinearly related to the
parameter values of the c¢ircuit. Due to these difficulties the

practical approach to fault analysis has been to generate fault




dictionaries. In this approach the circuit is simulated with a number
of different fault conditions and the responses are compiled in a
dictionary. The problem with this approach is that it requires
excessive computation time and massive storage. For example, if a
circuit has p parameters, and if one assumes n different possible values
for each parameter, then (n)P simulations would be required to generate
the dictionary. In order to avoid excessive computation time and
massive storage, it is usually necessary to consider only a small number
of possible faults so that the number of computer simulations required
is not excessive.

In the second chapter, we review some of the previous work in the
fault analysis of analog circuits. We review briefly different
approaches together with their advantages and disadvantages.

A new approach for the fault analysis of linear analog circuits
based on the adjoint circuit concept will be presented in detail in the
third chapter., The approach requires the measurement of all node
voltages under certain test conditions. 1In addition, the simulation of
the adjoint circuit on the computer is required. The approach has the
advantage of detecting possibly large tolerances. It is also highly
computationally efficient, and it does not require massive storage.
Moreover, the formulation allows one to determine necessary and
sufficient test conditions to determine the component values.

In the fourth chapter, we adapt the same approach to deal with
fault detection in analog circuits with accessibility to only part of
the nodes. A major application, single fault identification, will be
discussed in detail. It is shown that input and output voltage

measurements are enough to identify single faults.

FOU—




The extension of the approach to the fault analysis of analog
circuits with some nonlinear elements is discussed in the fifth chapter.
It is shown that we can determine any :mmber of operating points on the
I-V characteristic of the faulty nonlinear elements.

Some numerical examples are presented to demonstrate the different

algoritims in the sixth chapter. The conclusion follows in the seventh

chapter.
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CHAPTER 2
PREVIOUS WORK IN THE

FAULT ANALYSIS OF ANALOG CIRCUITS

2.1 INTRODUCTION

The problem of fault analysis of' analog circuits has been attacked
for many years from different sides., The fault analysis problem
requires the determination of c¢ircuit parameter values from some
measurements. Many different approaches and theorems have been
presented in the literature., In this chapter we will review some of the
approaches for the fault analysis of analog circuits together with some
theorems for solvability. They will be categorized into two main
categories., The first category is when all the circuit nodes are
accessible, By an accessible node we mean a node whose voltage can be
measured, and any type of excitation (voltage or current source) can be
applied to the circuit at that node with respect to a reference node.
The second category is when we have only a subgroup of the nodes that
are accessible, while the rest of nodes are not. The advantages and

disadvantages of each method will be discussed,

2.2 PREVIOUS WORK AND THEOREMS FOR SOLVABILITY

2.2.1 ACCESSIBILITY TO ALL CIRCUIT NODES

In this section we will review some of the previous work done for

cop vt _M



fault analysis assuming that all the circuit nodes are accessible.

2.2.1.1 METHODS FOR ELEMENT ISOLATION

The determination of the value of an element is not difficult if
both the curreat through the element and the voltage across the element
can be measured. In order to determine the current through an element,
i one terminal of the element nust be isolated. This can be done by
breaking the connection at one end of the element, but this approach is‘

not c¢onsidered practical in most test situations. However, in this

A ———

section, three other methods [1] are given for effectively isolating an

element which do not require that conductive paths be broken.

Consider the circuit in Figure 2.1. The unknown element 1is

o

connected between the nodes numbered 1 and 2. The impedances Za through

Zm lie on paths which ultimately return to node 1. Let us inject a
current I into node 2. The element Zo can be isolated by shorting nodes

3 to k, connecting a voltage source to node 3, and adjusting the value

of the voltage source until V2=v3 as shown in Figure 2.2. Then,

zo s V21/I Qt.'(Z“)

The disadvantage of this approach is that it requires the shorting cof
nodes in the c¢ircuit, and furthermore, the voltage source must be
‘ adjusted iteratively until V,=v,. l
| A second approach which does not require an iterative ad,jdstment 1
consists of shorting nodes 3 to k, and applying a voltage source between ‘

nodes 3 and 1, as shown in Figure 2.3. For this cirecuit,
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Fig. 2.1 Arbitrary network containing Zo.
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Fig. 2.2 Equipotential method for element isolation.
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Note that Z,. is the equivalent impedance of the parallel combination of
impedances Z_  through Z,. Next, nodes 3 through k are shorted to node 1
as shown in Figure 2.3, and the impedance

z13 z (Z1E zo)/(z1rz°) eeee(2.3)

is measured. From Eqs. (2.2) and (2.3) we obtain

2y 2 2,4/(1=(Vy, /V)) ceel(2.8)

Thus, the unknown impedance Z, can be determined from a two-step

measurement procedurs. The accuracy of the method deteriorates when the
voltage ratio V21/vs is nearly unity, or equivalently , IZ1E|<<IZOI .

Finally, a third approach to isolating an element consists of
connecting the element zo to the negative input terminal of a high gain
amplifier and grounding nodes 3 through k, as shown in Figure 2.4,
Ideally, the amplifier would have infinite gain and zero offset so that
node 2 is a virtual ground. Thus, assuming negligible current through
the impedances Z,,Z,,.....,2, we obtain

Zy a “Rrer Vs’ Vg eees(2.9)
This method requires only one measurement. The Hewlett-Packard 3060A

Board Test System uses a sophisticated version of this node isoclation

technique to make in-circuit component measurement.
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Fig. 2.4 Isolation with a high gain amplifier. e
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2.2.1,2 LARGE CHANGE SENSITIVITY RELATIONSHIP

Attacking the problem in a reverse manner, R. N. Gadenz,
M. G. Rezai-Fakhr, and G, C. Temes (2], 1973, used a relation betwsen
the voltage and current changes in the original circuit due to possibly
large parameter changes, and the voltages and currents of the adjoint
circuit in order to compute voltage and current changes due to tolerance
effects. They set up a .reduced system of equations solvable by either
Gaussian elimination or iteration to compute the response changes for
specified element changes, regardless of whether or not they are small
or large changes. They found out:. that their method was more economical
and efficient in computation than the direct analysis method or any
other method, provided that the number of toleranced parameters is much
szaller than the number of equations needed for the direct analysis of

the network.

2.2.1.3 SINGLE FAULT DETECTION IN POSITIVE RESISTOR CIRCUITS

An approach for single fault detection in positive resistor
circuits was suggested by T. N. Trick and R. T. Chien (3]. In whiech, it
was proved that for positive resistor circuits, if one and only one
resistor changes from its nominal value, then the voltage across that
resistor is greater than or equal to all the other reaistor voltage

changes.

2.2.1.4 A THEOREM ON SOLVABILITY
Studying the same problem from the graph theory point of view,
W. Mayeda proved an important theorem [U4] concerning impedance

isolation. He stated that :"the measurement of the impedance Zo at its




12

terminals ¢ and r is possible if and only if all paths in the circuit

from node ¢ to node r (excluding the path through ZO) contain at least

one accessible node." He proved this theorem using topological concepts;
N .

a slightly different proof was also discussed in [1].

2.2.1.5 THE ADJOINT CIRCUIT APPROACH
In this thesis, we present an additional approach to the
calculation of element values when all the nodes in the circuit are

accessible. This method is discussed in detail in the next chapter.

2.2.2 ACCESSIBILITY TO PART OF THE CIRCUIT NODES

In this section, we will review some of the previous work done for
fault analysis. assuming that not all of the circuit nodes are
accessible. There are two main directions in this case; the first is
concerned with pre-test procedures, while the second is concerned with

post-test procedures.

2.2.2.1 PRE-TEST APPROACH

The pre-test approach is well-known as the fault dictionary method
and is the most popular approach used in industry. 1In this approach
faulty circuits with different fault combinations are simulated on the
computer. Then, the different responses are compiled and a set of fault
signatures are generated and stored. The correlation of actual test
results with the stored data is used, hopefully, to identify the faulty
elements. Different methods were proposed to implement this fault
dictionary approach.

In 1966, S. Seshu and R. Waxman [5] gave a procedure for generating
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a set of tests for conventional linear systems by means of gain
measurements from an input terminal to an output terminal. Basically,
the procedure was to compute the corner frequencies of the nominal
network and choose, as test f(requencies, several frequencies in the
neighborhood of sach corner frequency, and. hence, detect shifts in the
corner frequencies. . Interpretation of measured values are obtained by
precomputing the gain at these frequencies for parameter deviations from
their nominal values, and compiling a fault dictiomary. Two major
disadvantages are, first, it needs the computation of the symbolic
transfer function, and second, the computation time grows exponentially
with the increase in circuit elements.

G. 0. Martens, in 1972, developed a way for the identification of a
single fault in electronic circuits [6]. They made use of the fact
that, in a linear circuit, any transfer function can be expressed in
terms of just one circuit parameter in a bilinear form. Graphical
constructions of the transfer function 1loci are pre-plotted under
different parameter changes, either experimentally or by circuit
analysis using a digital computer. Then, simple magnitude and phase
measurements, at a number of test frequencies, are made and plotted on
the set of predetermined loci in the complex transfer-function plane.
The faulty component and its parameter value may, then, be determined
from the loci. The method is restricted to only single fault detection.
It has some disadvantages; first, it requires considerable
computational and graphical effort in order to plot the transfer
function loci, especially when the circuit contains a high number of
components, Second, it fails to detect faults in some elements at some

frequencies. Third, it cannot point out single faults in a group of

B Rl e et LYY V' Y
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different type elements connected in parallel. Finally, it does not
have the capability of detecting relatively large single faults when the
rest of the circuit parameters are within some prescribed tolerance.

A practical fault dictionary approach was given by R. E. Tucker and
L. P. McNamee [7]. They developed fault models for some active devices,
e.g. a transistor, where the faults occuring were catastrophic , i.e,
either an open or short circuit. Then, they used these models in
running computer aided analysis programs for the probable fault
conditions. Next, they divided the different faults into groups, where
each group was characterized by some certain faulty responses. Hence,
using this information and the data obtained from the test circuit, they
could detect and isolate catastrophic faults. Their method is basically
the fault dictionary approach, which requires one to consider only a
limited number of possible' faults in order to avoid excessive
computation. The method is a brute force approach which only yields
information about the number and placement of test points through
numerous camputer simulation.

Another similar approach is given in [8].

2.2.2.2 POST-TEST APPROACH

The post-test approach does not require any pre-test data. It is
performed after the test measurements have been made and consists of
solving a set of nonlinear equations.

In 1962, R. S. Berkowitz [9] initiated one of the f{irst theoretical
studies of the analog circuit fault analysis problem. He mathematically
defined the concept of network-element-value solvability. Specifically,

he established a set of definitions which enabled an objective

»
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discussion of network solvability of arbitrary passive, linear, lumped
parameter networks with respect to a restricted set of external
terminals (available and partly available). Then, he obtained a
relation between the number of available and partly available terminals
of a network, and the number of admittance functions determining the
measurable behavior of the network. Moreover, he introduced some
theorems that gave solvability conditions for purely resistive nefworks
witp extension to include networks with internal energy sources.
Finally, he obtained a general necessary condition for
network-element-value solvability. Unfortunately, his work, 1) only
gave some necessary conditions for network solvability, 2) lacked
algorithms for network element evaluation, and 3) did not include active
elements.,

S. W. Director and R. A. Rohrer [10], 1969, attacked the problem
from the design point of view. They introduced an automated network
design algorithm in the frequency domain. 1In that algorithm, they
started with an initial guess to the network structure and associated
element values. Next, they considered a weighted integral square error
criterion over a specified frequency range as a performance measure. By
means of Tellegen's theorem [11,12], they derived a relation between the
voltage and current changes in the circuit due to parameter changes and
the voltages and currents of the adjoint circuit '[13]. Then, they
calculated the parameter space error gradient using that relation along
with only two analyses for both the original and the adjoint circuits
over that specified frequency range. Next, they adjusted the element
values, i.e. tuned them, using a suitable optimization technique such

that they moved in the negative gradient direction. Finally, they
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repeated this process until a suitable termination criterion was met.
This algorithm had two disadvantages; first, it took much computer
time, and second, since only first-order sensitivity information is
utilized, the algorithm can have serious convergence problems.

A fault 1solation scheme via component simulation was proposed by
R. Saeks [14], in 1972. By assuming an appropriate algebraic connection
model matrix, a system could be separated into two different blocks,
components and connections Dblocks. A formulation of the system's
variables is constructed based on that separation. Then another system
is designed to augment the original system, such that the whole
augmented system behaves exactly the same as the components of the
original ‘system. Hence, by controlling the inputs to that augmented
system and observing 1its outputs, component parameters could be
determined. Using this formulation, they obtained the algebraic
necessary and sufficient conditions for the exact determination ¢f the
internal component parameters for both the single-test frequency and
multiple-test frequency cases. The main disadvantages of such a scheme
are that, it requires an extremely large number of measurements. It
also requires considerable computational effort for inverting some
matrices, whose sizes are proportional to the dimension of the system.
Moreover, it is not very practical for the given test conditions, since
it requires the measurement of both branch currents and branch voltages.

Other approaches are discussed in [15].
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CHAPTER 3

THE ADJOINT CIRCUIT APPROACH

3.1 INTRODUCTION

In this chapter, a new algorithm is proposed for the calculation of
the element values in a linear circuit from node voltage measurements.
The method requires the measurement of the node voltages of the circuit
under several different test conditions. In addition, the simulation of
a second circuit, the adjoint ecircuit, is required under various
short-circuit constraints. The adjoint cirecuit simulations need to be
made only once for any given circuit, and the results can be stored for
future use. The element values of the test circuit can be easily
computed from the node voltage measurements on the test circuit and the

responses obtained from the adjoint circuit simulations.

3.2 THE ADJOINT CIRCUIT APPROACH

To derive the algorithm, consider the linear circuit N in Figure
3.1, which has m ports available. One may connect voltage or current
sources to these ports or simply make open-circuit voltage measurements
at these ports. We will assume that it is not practical to make
short-circuit current measurements, because if this is the case , then
by placing such a port in series with each element, the branch currents

are measurable and the problem becomes trivial, In addition,

short-circuiting some nodes while doing measurements may cause some




Linear
. Circuit N
Ipm {Vk,Ik}

Fig. 3.1 Linear circuit with m input,cutput,or test ports.
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damages to the circuit, e.g. burning some junctions due to excessive

currents, Also, we assume that the circuit N has b internal branches
whose respective branch voltages and currents in the frequency domain
are denoted by {Vk,]:k}. Finally, we introduce a second circuit N
{11,12,16], shown in Figure 3.2, which has the same topology as N, but
not necessarily the same branch or port constraints. It is assumed that

these circuits obey Kirchhoff's laws so that by means of Tellegen's

conservation of power theorem we can write [11,12,26]

b . . n . )
k§1 (kak-kak)z- J§1(VPJIDJ'vaIpJ) veeo(3.1)

Now suppose that one or more faults occur in the circuit N so that

Vk—avkq. AVk ’ Ik-—élk-o- AIk ’ ij—-ij+ Avpj ,and ij_)ij* Aij .
Eq. (3.1) becomes
b ~ ~
R (Ve (Tp+ 81)=(V ¢ 8V I, 1=
m -~ ~
- V. -
151[ p3Ips* AIpJ) (Vp3+ Ava)IpJ] eeee(3.2)
Subtracting Eq. (3.1) from Eq. (3.2), we obtain
b R . m . R
v - 2w -
k§1 ( kAIk AVka)- JE1 (ij Aij AVDJIDJ) eees(3.3)

Thus, by means of Tellegen's theorem, one can obtain a relationship

between the voltage and current changes in the original c¢ircuit, due to
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parameter changes in that circuit, and the voltages and currents of the
adjoint circuit [1,17,18,19]. Eq. (3.3) is valid for both frequency
and time domain measurements.

Next, we need to introduce the branch constraints into Eq. (3.3).
Since we have assumed that only voltage measurements are available, we
will assume t.ha}: we can exﬁress every branch current as a function of
its branch voltage.

If we assume that the kth branch corresponds to an admittance whose

nominal value is Yk, then we will have

Ik = Yk Vk -o-o(3ou)

and with faults

Iere AL = (Y + AY )V + 8 V)) .ee(3.5)
Therefore
&I, = MY (Vpe AVY) + Y AV, veee(3.6)

where Vk denotes the kth branch voltage when the circuit has no faulty
component, i,e. with nominal values. Furthermore, let us choose the
kth branch constraint of the circuit N such that it is the adjoint

eircuit of N (11,12,16], that is

Ik= Yk ;Ik -oo-(3n7)

LR e e = S T Y S




Then we obtain

-~ -~

In Eq. (3.8) we assume that we can measure the branch

voltage V, +AV, , and the admittance change 4Y, 1s the unknown.
Similarly, if we assume that the kth branch corresponds to a
voltage controlled voltage source (VCVS), whose nominal value is By o

we will have

Iak = 0 ,and ka = ﬂk de 0000(309)

and with faults

IUK"' Aj;lsz ,and ka"‘A vsk=(ﬂk4‘éu k)(vak*A Y!k) ee+(3.10)
Therefore,
4 Idkzo ,and AV5k=Ap, k(Vak+A de)-ﬁukdvak tt!(3011)

where « refers to the controlling branch and g8 refers to the

controlled branch, Moreover, let us choose the kth branch constraint of
the circuit ﬁ such that it is the adjoint circuit of N, that is a

current controlled current source (CCCS) with

I* H -pk%k 'and ka H 0 oo-(3o12)

oyt i e SRS s




Then, we obtain

Vo ALy 8V lontB k 818 k- 8Vpilak

= - (Vgper AVep) Ty By ...(3.13)

where in Eq.(13) we assume we can measure the controlling branch
voltage V_ ,+ AV, , and the coefficient change Ay, is the unknown.

Similar expressions can be easily obtained for other controlled
sources; voltage controlled current source (VCCS), current controlled
current source (CCCS), and current controlled voltage source (CCVS).
They are given in Table I.

Hence, Eq. (3.3) will reduce to

b -~ m ~ -~
T (X +8%)% 4P 2= T (V , AL -8V ,I ) .. (3.18)
PR Mt 0 Tl Sl 5 Rl S S 3

where Xk+Axk is assumed to be measured, ik is assumed to Dbe
calculated from the adjoint circuit analysis, and APk is the unknown
parameter change. These quantities are defined in Table I for different
circuit elements. Eq. (3.14) 4is a 1linear equation in the
unknown 4P, , ks1,2,....,b. In order to solve for the 4P 's we need
to generate a set of simultaneous linear algebraic equations with a rank
equal to the number of unknowns. This can be done by an appropriate
choice of test conditions for the circuit N and its adjoint ﬁ This
set of simultaneous independent linear algebraic equations will have the

following form

C e ot s e
»

R R
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TABLE I THE CIRCUIT CONSTRAINTS AND THE CONTRIBUTION TO THE RIGHT SIDE OF
EQ.. (3.14) FOR THE DIFFERENT CIRCUIT ELEMENTS.

Cirourt Conetrames
-~ Contribution o
Kioment L% Xy Xog Left side of
. Test Clrouit Adjomt Ciroust Equetion (3.14)
f * t *
. - v v R
ac.r %ol v | % Vet Ve | etawd k L e av % Y

= —
vevs . Vak .T_“ (Vg * AV..)é(u. *duge) (Vg *aV ) g ban ¢ Y bk =V, * <Vl i:,. duyg
. . >
~ . A JIV_ *aV ) iy " -~
} vees o™ Vo | Vo [Van *2Ver! A Vak T 2Vok! | gy Vg Vi [Vt 2V Vg domy
. —
~ _ - A~
cces Iy [ Vix o) * 3lg) B * ddy) Uy » alyy) VK Vox Mg * 3lygd Vjedog

I (VI (e s dngd (&3l "l ¥ il ¢ ald Uy o
ccvs " L ~hy ak ak é & k! Yak ak U ™ ak i) U 3 oy

Fr-4822
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— - - - |

(Ko AXXy oo o (Koo 8X)Xp 0o o (Rye aXpIX, | 8P| Jaey

(x1+ AX1)i1 . o . (xn+ Axn)igj- .« o (Xb+ Axb)ib APn Aen

- T T . . . .3.18)

(E1r 0%y oo (Rpe 8Xp)Kg « o (Xpe 8Xp)Xp[|8Py | |86y

where de, represents the right-hand side of Eq. (3.14), and each
equation has a different combination of test conditions for the circuit
N, and its adjoint ﬁ. In general, the matrix of the linear system
(3.155 is full. Then, the computation effort to solve this system will
increase rapidly as the dimension of the circuit increases. Hence, it
will be a good idea if this system could be broken into smaller
subsystems, as shown by the dashed line in Eq. (3.15). Since, the
entries of such matrix are (Xk+ Axk)ik , and since (Xk+ 8%,) 1is a
response to be measured, then, the only term we can have control on will
be ik‘ This could be done by appropriate choice of the adjoint circuit

excitation conditions in order to force some of these Xk's to be zero,

e.g., if we choose the ad joint circuits such that

Xn*1=xn*2=......=xb=o in the first n-equations in system (3.15),
then, we can solve the resulting nxn subsystem for the unknowns
8P iy, 4P,. By doing so, we can partition our bxb matrix into
comparatively smaller submatrices. Consequently, the computational

effort will be improved greatly by solving these small subsystems.
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In other words, a special choice of the adjoint circuits ;l will
isolate a group of elements. This group of elements consists of all
el:ements in a cutset, for example, all the elements connected to a
common node, In order to see how this is done, consider the circuit
shown in Figure 3.3, where Y, through Y, are connected to node 1. Here
we will assume, for simplicity, that this group of elements are linear
and passive. Although, active elements could be handled by the
appropriate models and Table I. Suppose we wish to- measure the
deviation of all n of thése admittances from their nominal values. 1In
Figure 3,3, we will assume that node ne1 is the reference node, and we
have introduced n test ports at which measurements can be made and
excitations applied to the circuit, In order to isolate the admittances
1, through Y, and simplify the calculations, the ports 2 through n are
shorted and a 1A source is applied at port 1 in the adjoint circuit as

shown in Figure 3,4, With thea; constraints, Eq. (3.14) becomes

. b n -
V . T (Vy+ AV,) AY,=z AV ..1A+ T AV I veo{3.16)
P1Z MK k K p1 ke | KDk

or we can divide by VP1 and eliminate the adjoint circuit responses.

n =1
k'f‘(vk# AVk) AYkSO(Y1°+YZO+...+Yn°) Avp1+k§1fko Avp(k-'-‘l) ---(3-17)

or

n n
2 (v +* AV ) A! S Z ! Av ooo(3o18)
ka1 K k k K= 1 k0 k

Recall that Vi is the branch voltage in the circuit without faults. Yo

»
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Fig. 3.3 Network with n unknown admittances connected
to a common node.
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to isolate the components Y1 through Yn'
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is the nominal value of the admittance, and Avk is the change in the
branch voltage in the faulty circuit. Eq. (3.18) can also be derived
by taking the difference between the Kirchhoff's current law equat:ion_s
at node 1 for the faulted circuit and the unfaulted circuit (nominal).

Note that we have not as yet specified the port constraints in the
circuit under test. In order to solve for the unknown admittance
deviations from their nominal values, we need to measure the branch
voltages (V . Avk)u) for n independent test conditions. Thus, the
superscript j denotes a particular test. We write

NI (1
(Ve av) D av e av ) (] Ly, - T g b
=l

: : . . v r(3.19)

n
Vow a0 v e av )@ ey | |- £y av P

An
_ | -

For now, we assume that each of these tests is made at the same

frequency. In order to obtain a unique solution to Eq. (3.19), the
square branch voltage array must have rank n, that is, the rows of this
square array must be independent. The necessary and sufficient test
condition required to determine the admittances Y1 through Y  from

branch voltage measurements can be found from the short-circuit

admittance equations for the circuit.

Ylp = L «..(3.20)

where the port voltages for a particular input excitation LP(J) is

J ~adates




...(3.21)

Thus, in order to generate n independent port voltage vectors 1p(3)
J=1,2,¢44440,n , and hence, n independent branch voltage vectors _V_(J) ’

we need to excite the circuit with n independent current source vectors.

One possible set of test conditions is given below.

| Test Conditions: Set Ipf 4, and I;= 0, i=1,2,....,n , but i#j, and

P
measure the branch voltages (Vk... AVk)(J)- Do this for j=1,2,......,0,

Figure 3.3. Substitute this information into Eq. (3.19) and solve for

8 Y ,k=1,2,.....,0. ’ *
Thus, the use of Tellegen's theorem and the concept of the adjoint

circuit leads to a simple linear relationship between the unknown ‘

parameter changes and the branch voltage measurements. The number of h

linear algebraic equations which must be solved is equal to the number

of unknown admittances connected to the node. Note also that the

necessary and sufficient conditions for the determination of the t

admittances Y, through Y, from only their branch voltages is that nodes
1 through n+1 be accessible., Finally, the above results apply not only
to a collection of admittances connected to a common node, but also to !

any cutset of admittances in the circuit. Below a simple algorithm is :

.
[T

given for the calculation of the admittances in a ladder network from

node voltage measﬁrements.

3.3 LADDER STRUCTURE NETWORKS
The ladder circuit is an important structure to consider since most
passive filters (including mechanical and crystal filters) have the

ladder structure.Also, many A/D and D/A converters contain a resistive
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ladder network.In this sectjon it will be shown that all the admittances
in the arms of the ladder circuit can be uniquely determined from a
simple matrix inversion.

Consider the ladder network in Figure 3.5.The following theorem
states the nminimum test conditions ¢that are both necessary and
sufficient to determine all the admittances from only voltage

measurements at a single frequency.

Iheoren
All the parameters in the ladder c¢ircuit can be uniquely
determined from voltage measurements at a single frequency

under the following two test conditions:

1) Ip1£ o , I 0 and measure the branch voltages

p2*
(Ve v, 121,2, 0000002000
2) Igwv= 0, Io# 0 and nmeasure the branch voltages
(Vi* AVi)(Z), i=1,2,......,2n+1 , and provided that
a) the circuit does not have transmission zeros at the
measurement frequency, b) the series arm impedance ZZK‘ 0 at
the measurement frequency, and c¢) the equivalent impedance at
any node in the circuit is finite.
Condition a) is necessary so that we have nonzero branch voltages to
measure at the given test frequency, and b) is necessary in order to
avold having Y, . and Y,.,, in parallel at the test frequency.The
admittances of parallel elements usually cannot be determined from only
voltage measurements at a single frequency. Finally, in practice
accuracy requirements may dictate that we perform more than the above

number of minimum tests.Next, a proof is given for this theorem.

In order to simplify both the proof and the computational
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complexity of the method, we will isolate the elements at a single node
by shorting the other nodes in the adjoint circuit and applying a 1A
source at the non-shorted node as shown in Figure 3.6.We do this
successively for all (n+1) nodes in the adjoint circuit. The first
adjoint circuit isolates the admittances Y1 and Yg.The second adjoint
ecircuit isolates the admittances YZ’YB’ and Y, ,ete. The last adjoint
eircuit ((m+1)th) isolates the admittances YZn and Y2n+1'Then Eq.

(3.19) becomes

-(v1+Av1>(”(v2+Av2)“)r 0 0 0 7] Gy ]
(v1+4v1)(2)(v2+4v2)(2){_- 0o 0o .. 0 at,
0 <yt D (Vpear) Vv U 0 a1
0 -(v2+4v2)(2’(v3+av3)(2’(vu+avu)(Zﬂ;:: 0 oy,
o 0 0 (a0
. . {-‘. IR
0 0 0 "'(v2n+1*”2n+1)(1) 8 Y one
i 'AV1(1)Y10’4V2(1)12:
v, @y _ay, @y

(1) (1) (1)
PR SV Feie SYCY Mlkie 098

(2) (2)
ol AP PYST\ Pl FTLVY Faag SFP ...(3.22)

(1)

1 (1)
4 Yon,08Vonet  T2net 0]

V2n

3
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Fig. 3.6 1Isolation of elements by shorting nodes
in the adjoint circuit.
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Solving the first two equations, we can determine 4Y1 and AYZ.Then

AY2 is substituted for in both the third and fourth equations , which
upon solving them we can. determine AY3 and AYu.By proceeding in this
manner, we can determine the unknowns AYi, i21,2,...0..,2041, It is clear
that we only solve subsystems of dimension 2x2 at most. Note that the
last subsystem will have a dimension of 1x1.In this case, it is easy to
See that the number of operations required to solve system (22) will be
proportional to the dimension of the system.While if the matrix of Eq.
(3.22) 4is full, then, the number of operations needed will be
proportional to the dimension raised to the power of 3. This indicates
that great saving in the computation effort will be achieved through the
special choice of the adjoint circuits.

The proof of the last theorem will be based on studying the two

equations resulting from the kth adjoint circuit; they are

- (1) (1) (1)
Vopa*8Vop )" 7 g 98V )07 (Vo #lVs) ) &Yop o

i (2) (2) (2)
VootV 2) %7 g q#lVo )77 (Vo eaVy) op-
AYZK J
- (1) (1) (1)
ol EAPICRS PPEY\ PR IS SIREY\ S O ...(3.23)
(2) (2) (2)
LAPPICRINS PHIPE. L PTIR RS PIREY .\ Pnie S

In BEq. (3.23) there are only two unknowns, AYZk-l and A'{Zk.'rhe

4 YZk-Z is determined in the (k-1)th solution.A necessary and sufficient

condition to obtain a unique solution for the AY's is that

Atatas
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(V¥ ) 1) (Ve etV ) ()
y(2)

( 1 ) see ( 3 .2“)
S PREY\ PIRD (Vop1+8V5

The requirement that there be no transmission zeros at the measurement
frequency insures that the above voltages are not zero.Also, Eq. (3.24)

is equivalent to the requirement that

A 4
k__ 4 2k ...(3.25)

-

N
Za*loger  Zaget

-
where Z, , is the equivalent impedance at node k with Yo = 0, and

z;kﬂ is the equivalent impedance at node ket with Y_ = 0.We can write

2k
(25) as

ol 2o+ 2o 1* 2o 1) # 0 .. (3.26)

Note that the equivalent impedance at the kth node is

L) -
Zok10Zok*Z o1 ]

Zeq,k = z

...(3.27)
‘. -

2+ 22K 1+ 22K 1

This condition requires that ZZK" 0 and that the equivalent impedance
at each node be finite at the measurement frequency.The requirement that
the voltages not be zero at the measurement frequency also means that
there are no transmission zeros at the measurement frequency, that is

ZZK must be finite and zeq,k" 0 at this frequency.

In conclusion, this theorem gives two simple conditions by which
all the impedances in a ladder network can be computed provided that the

test frequency is not at any of the transmission zero frequencies, nor

A, p——,

fi™, P L e
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is any of the series arm impedances zero at the test frequency. In the
next section, we examine the possibility of wusing multiple test

frequencies to determine the components in a circuit.

3.4 MULTIPLE TEST FREQUENCIES
Recall that in order to uniquely determine the admittance changes
in a faulty circuit, we need to have n test conditions such that the
rank of the square matrix in (19) is n, that is equal to the number of
unknowns.In addition to exciting the circuit at different test points ,
we can also use different test frequencies; however, the admittances
are frequency dependent in dynamic circuits.Thus, Eq. (3.19) must be
written in terms of individual component changes, that is,
g (78 ) DGy e v ) <) fa

o 4
(Jag) (Va7 )™ (g0 TV _av ) (D) e,
_ 4L 5

™ n
- £ Teoldoy v, 1)

2 . ---(3-28)

n

- T Y (Ju)av, (D
ka1 KO TRk

where APJ= AGJ, ACJ, or Al‘J and the exponent aJ=0,+1,or- -1, depending

PAR NS SCREN T ¥ TR K
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on if the jth branch is a resistor, capacitor, or inductor,

respectively.The voltage (V, .4V

] J)(i) is measured at the rrequencymi.
If we assume a single unit input function and that the branch
voltage is a rational function of the complex frequency s, then we can

write (28) as (without any pole-zero cancellation)

rs1d1u1(=1). .. s?"Nn(sﬂFAP;

1 1
diag( . ] . . .
D(S.') D(;n)

_s:’ LE PP T | P

3

" (1;
- TY  (s,)4v
oy kot 3170

. «.(3.29)

n
-7 Y, (s )AV
ke 1 ko' n k

(n)

where the polynomial D(s) ylelds the poles of the transfer function for
the branch voltages with respect to the input port, and Ni(s) ylelds the
Zeros.A necessary and sufficient condition for the solution of Eq.
(3.29) is that the square matrix on the left is nonsingular.This means
that none of the test frequencies can be a pole of the polynomial D(s)
(in case there are pure imaginary poles).Also, the circuit cannot have

two identical element types in parallel.Note that the above matrix can

be written in the form
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~ T et ne1 n
o a :
s, 1N1(s1). . o3y n1‘!,,(31) ani“)s1i. . .iani(n)s1i
. H . . SS A 100(3'30)
s N ‘-”ul‘l n-1 (vH_ 1 n; (n)_ 1
n No(sp). o sy Np(s)) iz=oai Sy . .i=°ai 3,
L - -——
where S and A are nxn matrices given by
. 2 ne1]
1 s, 8.7 « . 8y
2 =1
1 32 32 « o o 32
S= . . . . N 0(3031-3)
2 n=-1
1 s . o
| %o n *a
ao(1) ao(z). . ac’(n)
31(1) 31(2). .. a1(n)
A: . . . -(3031-b)
(1) (2) (n)
l.a.n'1 an__1 e o e an_1 ]

Then, a necessary and sufficient condition for the solution of Eq.

(29)

is that both matrices S and A be nonsingular.This implies that the n
test frequencies should be different pairwise.Also, the difference
between the highest degree and lowest degree terms of at least one of
the polynomials saini(s) in Eq. (3.29) be n-1, to insure that there
will be no zero row in the coefficient matrix A.In addition, the

coefficient matrix A {s of full rank.

If these necessary and sufficient conditions are satisfied, then,

ERE Y P .‘-ﬁda'!*j" Sty

e ———

S e




40

one can always find a set of n frequencies such that the rank of the
square matrix in Eq. (3.29) is n.

Note that by using different measurement frequencies, we can
determine the value of different types of parallel elements, while this
is impossible under only single frequency voltage measurements.Below an
alternative algorithm is given for the calculation of the impedances in

dynamic ladder circuits with different type elements.

3.5 LADDER NETWORKS

Consider the same ladder network as before, Figure 3.5, where the
structure has different type elements. Recall that ih order to uniquely
determine all the parameters, we need two test conditions.The first test
consists of exciting port 1 with a current source and measuring all
branch voltages, while in the second test port 2 is excited with a
current source and all the branch voltages are measured.These two test
conditions are performed at the same frequency.

In this section, we will show that we can also uniquely determine
all the parameters of a ladder circuit from the following two test
conditions.

Jleat Conditions:

1) With Ip1£0 and I .0 measure all the branch voltages

p2”
(Viﬂ'Avi)(1)'1”'2"""'2“*’ at the frequency f,.
2) With Ip1£0 and Ipzso measure all the ©branch voltages
(Vij-avi)(Z),1=1,2,.....,2n+1 at the frequency f,.
These test conditions together with the same adjoint circuits will yield

the following linear system of equations.
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where APJ= AGJ, ACJ,or Al‘J and the exponent dJ=0,+1,or <1 depending on
if the jth branch is a resistor, capacitor, or inductor, respectively.As
stated before, solving the 1linear system (32) will be very
computationally efficient, because in eﬁch step, we solve only a 2x2
linear subsystem, except the last one has a dimension of 1 .

In this case, a necessary and sufficient condition for the solution
of Eq. (3.32) is that each 2x2 submatrix and the last 1x1 submatrix be
nonsingular,.Consider the two equations resulting from the kth adjoint
circuit, they are (after some manipulation)

(Jw,):”‘“ Vg1 #8V )¢ ) 20, ) e 2y
( sz) 2k-1(

2k-1

(2) ¥k (2)
Vaka1#8Vg.1) "7 (30p) T (VouedV )7} | 85

(1)
Aezk-1 .+.(3.33)

e

A necessary and sufficient condition to obtain a unique solution for

8 P4 and & P, is that
(V - +Av - )(‘) (v - *Av - )(2)
(Jw1)ad 2k-1"8%2k 21) 4 (sz)dd 2k-1"%"2k %2) oo u(3.38)
(Vo +8V ) (Vo + 8V, )
where, Yyz Aoy 4= ¥ o «ea(3.35)

and can have an integer value in [-2,+2].
This implies that there be no transmission zeros at the measurement
frequencies, to insure that the above voltages are not zero.Also, the

two frequencies must be different.In addition, the series arm Zakgo R
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and the equivalent impecdance at any node of the circuit should be finite
at both of the measurement frequencies, otherwise we get a zero
determinant. Note that the only way that Eq. (3.34) is not satisfied,
is when we have either a circuit with the same element type structure,

or the camplex function F(s) has the same value at two different

frequencies, where

(Voo . (8)+dV.. .(8))
F(s)=(s) @ 2! 2k .. (3.36)

(VZk(s)+AV2k(s))

Obviocusly, we exclude circuits with structures of the same element type.
With the above conditions satisfied, one can always find two
different frequencies such that Eq. (3.34) is satisfied, which means

that the matrix of Eq. (3.33) is nonsingular.

3.6 MIXED TEST CONDITIONS

So far, we have shown that in order to isolate a group of n
elements in a cut set of a circuit, we need n different test conditions
such that the matrix of Eq. (3.19) is nonsingular.These n different
test conditions could be obtained through two ways.First, by exciting n
specified ports with a current source at the same frequency and
measuring branch voltages.Second, by exciting one specified port at n
specified frequencies, and also measuring branch voltages.Using the
second way, we can determine the value of different type parallel
elements, which is not possible through the first way.On the other hand,
using the first way, we can handle single element type structures, which
is not possible through the second way.

Sometimes it is necessary to use a combination of the above test
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conditions in order to uniquely determine the element values.In other
words, we can excite our circuit at different ports with different
frequency current sources.This approach would be needed in circuits
where there is at least a group of different type elements connected in
parallel, etc.

As an example to illustrate this, consider the c¢ircuit shown in
Figure 3.7, where we need to determine the parameter deviations in
Ri,Ry,L,and C.The test conditions for this circuit will be
lest Conditions:

1) Connect a current source between ncdes a and o, and measure
(V1¢AV1)(1) and (V2+AV2)(1) at three different frequencies fi' i=1,2,3.
2) Connect a current source between nodes b and o, and measure

(V1¢Av1)(u) and (V2+Av2)(u) at one frequency, say f,.

Under these test conditions, we will have

- -r 9
3,7 0,V ) s (0 aav Y sav Y v (M far
3,7 (Va0 B 0,1,V @) ear) ) eary B ac

337 (0,003 v eav ) (v ear ) (v, P g

337 0 ear ) s e ) @ ear ) pany) ) fasy

-1 (1) (1)1
-(s1 L

-1
o *31Co*G1)aVy " "=Gp,aVs
2 -(32‘1L°‘1+szco+51°)4v‘(2)-62°Av2(2) . e (3.37)

3-1Lo-1*’3°o*91o)AV1(3)'G20AV2(3)
(%)

- -1, =1 (%)
(31 I‘o +s1C°¢G1°)AV1

-(s

—

Solving Eq.(37), we can determine the deviation in parameters

Ar, AC, AG1, and AGZ.
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Fig. 3.7 Calculation of RLC parallel elements.
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In the next section, the effect of measurement errors on the
solution for parameter deviations will be studied.In addition, the

dependence of that solution on the first-order sensitivities of the

circuit will be revealed.

3.7 EFFECT OF MEASUREMENT ERRORS ON THE SOLUTION
It has been shown that, in order to isolate the group of n elements
in Figure 3.3, we need to solve the nxn linear nonsingular system of Eq.
(3.19) or Eq. (3.28).Any of these systems is constructed mainly from
voltage measurements. Practicall;, voltage measurements are obtained
within some tolerance depending on the accuracy of the measuring device.
In order to examine the effect of these measurement errors on the

solution, we will apply the perturbation theory (18,19] on our linear

systenm.

3.7.1 ERROR ANALYSIS IN LINEAR SYSTEMS

Any of the linear systems given by Egs. (3.19) or (3.28) could be

rewritten as

A X

»
o

...(3.38)

where A in an nxn nonsingular matrix and its entries are wmeasured
voltages under different test conditions, X is the unknown parameter
deviations vector, and » is the right-hand side vector, where its
entries also depend upon the measured voltages.Having errors in the

measured voltages is like perturbing both A and } , simultaneously.

Then, the problem of studying the effect of measurement errors on the
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solution will be equivalent to the problem of studying the effect of
perturbations in both A and b on the solution x in Eq. (3.38).
Incidently, the problem of studying the effect of perturbations in A and
b individually on x was done in [18,19].Upper bounds on the resulting
relative error in x were derived in each case.Next, we will obtain an
upper bound on the relative error in x resulting from simultaneous

perturbation in both A and p.

3.7.1.1 EFFECT OF PERTURBATIONS IN b ON X

In this section, we will consider the effect of perturbations only
in the right-hand side vector b on the solution vector x of Eq. (3.38).
Specifically, we assume that only b is perturbed to b+db, while A is
held fixed.Consequently, x will be perturbed to x+fx,, and Eq.(38)

becomes

A(xed%,) = beBb «e(3.39)
Subtracting Eq. (3.38) from Eq. (3.39), we get

Au‘b =8p ...(3.40)

or

8x, = A7 ab . (3.81)

By taking norms of both sides

W oo i e 1 7s a e
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Naxg it < e~ an’ cee(3.42)
Also, taking norms of both sides of Eq. (3.38)
RN < an nxh .. (3.43)

Multiplying Eqs. (3.42) and (3.43), we get

Wax 1) Nl <at e i nxh naen BNERTS

Assuming that p£0 , we get

éx, |y (L]
—— < Cond(A) — ee (3.45)
Nxi Y0

where  Cond(A)HIAN NA™Y=( wy/ w) 2 1 .r.(3.46)

and M1 and W, are the largest and smallest singular values of matrix
A, respectively, 1i.e., 912 and “"nz are the largest and smallest
eigenvalues of TTA, respectively, where ar is the complex conjugate
transposed of A.

Eq. (3.45) is an expression for the upper bound on the relative
error in x due to perturbation in bh.Note that the quantity Cond(A),
named as the condition of matrix A, appears in that upper bound and it

has a minimum value of unity.

(%) 1If x=[x1,x2,....,anT is a vector of n components, we mean by
ll.&lk[|x1l2+lx212+....+|xn|2]0'5. If B in an nxn matrix, we mean by

I1BI =max( HBXIl 7 HX!l ) over Hxll £ 0.
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3.7.1.2 EFFECT OF PERTURBATIONS IN A ON x

In this section, we will consider the effect of perturbations only
in the matrix A on the solution vector x of Eq. (3.38).In particular,
we assume that only A is perturbed to A+8A, while b is

fixed .Accordingly, X will be perturbed to 'K*QKA , and Eq. (3.38)

becomes

(A+6A)(x+§_xA) = b ... (3.47)
Subtracting Eq. (3.38) from Eq. (3.47), we gel'i

(A+34) Ox, = ~8A x «..(3.48)
Assuming Ha~! S5All < 1, then, (A+8A) is nonsingular, and we will have

8%, = -(1+a”'6M)71 a7 A g .o (3.49)

By taking norms of both sides, we get

Héx, 1y
2 <n(zea~ 80t nattsan
it
na-tsac*™
S R
1 - Na~6an
A=) 1840
< ...(3.50)

1 =0a"N san

which could be rewritten as

FCRE I
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Hex, i) Cond(A)DNaAMAIN
<

«..{(3.51)

Nxit =~ 1-Cond(A)DIsAMIAN]

which is the upper bound on the relative error in x due to perturbations

in A. Note that the quantity Cond(A) appears also in this upper bound.

3.7.1.3 EFFECT OF PERTURBATIONS IN A AND b ON x

In this section, we will consider the effect of simultaneous
perturbations in both the matrix A and the right-hand side vector b on
the solution vector x of Eq. (3.38). This case is important because it
will be the actual situation when we have errors in the voltage
measurements, as shown before. Hence, assume that A is perturbed to
A+8 A, while b is perturbed to p+8b. Consequently, x will be perturbed

to x+8x, and Eq. (3.38) becomes

(A+8A) (x+0x) = beSb ...(3.52)

and our goal is to get a relation between §x, and both of §A and §b.
Equivalently, we can get a relation between §x and both ﬁ_x,A and é_z_b,
where §X, and éxb are the perturbations in x due to individual

perturbations in A and b, respectively.

Subtracting Eq. (3.38) from Eq. (3.52), we get

(%) Since I=(I+B)"'(I+B)=(I1+B)~'4(1+B)"'B, hence,

12 0TI 2 10 (T+B) =N 11 = 1CT+B) =T8I 3 1 (TeB) =Ml = 1 (Z+B) =11} 1B, which

reduces to || (I+B)=1{1<1/(1- |IBI\ ) ; provided that |1BH < 1.

i

—
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(A"’GA) u: -6&&*& --0(3-53)

Substitute from Eqs. (3.40) and (3.48) into (3.53)

(A+SA) 83X = {A+54) G_KA + A Qx'b veo(3.54)

Again, assume that [A='8a) < 1, then (A+8A) is nonsingular

BX = 8x, + (I+a™88)7" Bx, .+.(3.55)

Take the norms of both sides, then divide both sides by !x!

Naxly Néx, it 1 I 1]
S A + T ﬁxb 000(3056)
Nxlil 1xh 1= AT |1 11601 ix))
Finally, substitute from (45) and (S51) into (56)
Haxi Cond(4) sAll  H&RII
< «..(3.57) i

( + )
WXt ~ 1=-Cond(A)CHSAIWMAN] 1AM WBH i

Eq. (3.57) is the expression for the upper bound on the relative

error in X due to simultaneous error in both A and B. As anticipated,
Cond(A) appears in this expression.

In order to lessen the relative error in X due to errors in A
and/or ), it is necessary to push the upper bound(s) down as far as
possible, One obvious way to keep relatively small upper bounds is by

keeping small relative errors in A and b, i.e. by keeping small errors i

in the measurements. Another way, is by having low values of Cond(A4).

Moreover , for certain values of relative errors in A and b , the
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relative error in X is minimum when Cond(A)z1. In general, knowing the
value of Cond(A) together with the maximum relative error in A and J,
one can have a clear idea of the accuracy of the solution Xx.

Note that the assumption [JA='{} 1I5A)l ¢ 1 used |before 1is
practically feasible, since the measurement errors are usually very
small compareq to exact vaiues.

In the next section, we will apply the error analysis to the ladder

structures and try to relate Cond(A) to the circuit specifications.

3.7.2 LADDER STRUCTURE NETWORKS

As shown above, in order to have an idea about the accuracy
obtained when solving for the network parameter deviations, we need to
examine the condition of the square matrix of the corresponding linear
set of equations. Since in case of ladder structures, Figure 3.5, we
will have linear subsystems of dimension at most 2x2. Then it is
sufficient to study the condition of a 2x2 general submatrix in Eq.

(3.22), where the A matrix is given by

ap (1
A=z

2 3y2

= ...(3.58)
(2) (2

(Voa1#8Vop ) 7 (VapeetVpy) 3 3y

For this 2x2 matrix, an analytic expression for Cond(A) is available in

terms of aiJ’ the entries of matrix A [18], which is

Cond(A) = o + ( g2 - 1 )0.5 ...(3.59)

where,

Caskyr
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2 2 2 2
o= [lanl +la12| +lay, | +|a22l 1/(2 |a11a22-a12a21ll ...(3.60)

It is clear from Eq. (3.55) that Cond(A) {is continucus
monotone-increasing with ¢ on (1,@). Hence, the lower value of ¢ ,
the smallest value of Cond(A), is the smallest relative error in the
solution vector due to errors in the voltage measurements.

Under the previously specified two test conditions in the theorea,
we will have the equivalent networks shown in Figures 3.8-a and 3.8-b.
For simplicity, we assume that we have a network with elements of the
same type. Without loss of generality, we assume that we adjust the
excitations such that the Norton's equivalent current source is 1A in
each in Figures 3.8-a and 3.8-b. Under these assumptions, we will have

the following voltage expressions

v M 2 » 3 N (3.61-a)
k-1 2okt PactZaka ) o1+t ake) +(3-01-2
L S 2 el (3.61-b)
2 *Pok-1Za/ ot *Patloket) +(3.61-

SRR SR MVTC MR SR M (3.61=0)
2Kk -1 2k=1%2k+17 421142k  “ 2K 1 e

(2) N A .
(PP PP PRI MR M PR Y +(3.61-4)

Substituting from Eqs. (3.58) and (3.61) into (3.60), then, dividing
both numerator and denominator of the resulting equation by

A N\
1254112120112 1we get

o2 ( a?+0.5 B2 aa1)/( @ AB+B) ve (3.62)
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Fig. 3.8 (a) Norton's equivalent circuit at nodes k and k!
under the first test condition.

(b) Norton's equivalent circuit at nodes k and k+1

under the second test condition.
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where « and g are impedance ratios, given by

Faly /T, o sand Bl /T, c0.(3.63)
According to the previous theorem, ¢« and B must be finite and none.
zero. In addition, they are positive and real quantities due to the
assumption of same element type structures. As stated before, we wish
to have as low a value of o as possible in order to have low relative
error in the solution. In addition,'the minimum value of ¢ is 1, which
makes Cond(A) equal to 1, a minimum also.

A closer look at the function of Eq. (3.62) yields the following
data
a) If =8, theno =(1.5a24.0!+1)/( a2, a), Hence, ¢ €[1.118,1.5] for
o €[0.5,), as shown in Figure 3.9.

b) =1 and 8 =2 gives a minimum Ivalue of ¢, which is unity.

Hence, in order to have a low value of ¢ , @ and B should not be
small, and they should be close in value. This suggests that ladder
networks, with nearly equal arm impedance values and equivalent
impedance values at each node, will have very low relative error in the
solution for the parameter deviations due to errors in the measurements.
Examples of such structures, in practice, are A/D and D/A converters,
ete.

For general topology networks, it is not easy to adopt the same
analysis to extend the result obtained for ladder structures., This is
because of the fact that it 1is not possible to get an analytic
expression for the condition of matrices having dimensions higher than

2x2. Rather, we would draw a similar conclusion, but using the concept

* ‘)‘&.N~ - .
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of first-order sensitivities.

Consider a general topology network as shown in Figure 3.10.
Assume , for simplicity, that it is a linear passive circuit, and port 1
is the .input port with voltage source as an excitation. Also, consider
its adjoint circuit, Figure 3.11, where port 1 is shorted and port m

(output port) is excited by a 1A current source. Then Eq. (3.14)

becomes
b vy v, oY v
£ 5,0 (1e—y K . BB .. (3.64)
k=1 "k Vk Yk me

By generating b independent equations of Eq. (3.64), we can solve for
the AYk's. In this case, it is also desirable that we have as low
matrix condition value as possible. Now, suppose that the system matrix
is transformed into a diagonalized form using orthogonal matrices. Then
the matrix condition value will not be affected [18]. This will be
equivalent to the following system. First, assume that we have a
net.work N1, that is the same as network N, but only element ‘{.| has a

fault AY1. Second, assume that we have another network N_, that is the

2’
same as network N, but only the element ‘{2 has a fault AYZ. By doing

S0, we can generate the following equivalent system of equations.

P p———
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This system is equivalent to the original system of equations because,
it yields the same solution for the AYk's. Then, for the diagonal

matrix of Eq. (3.65) to have as low condition value as possible, we

should have very close values for Szim; =1,2,....,b. In other
words, having very close values for the first-order sensitivities will
help keep low matrix condition value, and cbnsequently, low errors in
the solution due to measurement errors.

Generally, it is a good idea that, during the course of solving for
element deviations, one solves for the singular values for the different

submatrices to determine their condition values. These values will give

a good indication of the accuracy of the computed parameter deviations.

3.7.3 SOME PRACTICAL CONSIDERATIONS

It was shown in Eq. (3.22), that for ladder networks, we only need
two test conditions. Moreover, the formulation allowed us to solve for
two (or one) elements at a time, e.g., first we solve for 4 Y1 and AY2
y then using the obtained value for AYZ, we solve f{or 4 Y3 and AY,.
This is done repeatedly until we solve for all the element deviations.
PCepending on the element types and values, and the test frequency(s),

one or uwmore of the 2x2 submatrices in Eq. (3.22) may be
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ill-conditioned. This will cause a numerical problem in obtaining the
element deviations corresponding to that ill-conditioned submatrix.
Consequently, those element deviations will have large errors.
Moreover, since one of these values is used to solve for the next couple
of element deviations, then this large error will propagate to the
remaining parameter calculations. In order to cure such a situatuion,
we need to break that ill-conditioned submatrix and reorder the elements
such that the corresponding elements are placed at the bottom.

As an example illustrating how such scheme is done, consider the
ladder network in Figure 3.5, where the submatrix corresponding to
elements Tog-q and Y, is ill-conditioned. In this case, we will choose
a different set of adjoint circuits. The ith adjoint circuit will be
the same as the original circuit except node i 1is excited by a 14
current source, and both nodes i-1 and i+!1 are shorted (except when i=1,
only node 2 is shorted, and when iz=n+1, only node n is shorted). We do
this for 1i=1,2,....,k-1,n+1,n,n=1,,...,k+1,k , in this order. Then, in
Eq. (3.22), the previously ill-conditioned submatrix will no longer
exist.

Another important practical aspect is the choice of test
frequency(s). This is discussed in detail in [5]. It was noticed that
the test frequency(s) in the neighborhood of the poles and zeros of the
circuit's transfer functions ylelded the most information. Furthermore,
it is obvious that choosing a frequency(s) that is(are) deep in the stop
band of the circuit is a bad choice. It is also recommended that if
more than one frequency is to be chosen, then, they should not be
ad jacent in a flat band, but, they should be chosen in different slope

segments of the output frequency response,i.e., they should interlace
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with the circuit's poles. Sometimes, changing the test frequency(s) may

be used to cure an ill-conditioned submatrix situation.
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CHAPTER 4

INSUFFICIENT TEST DATA

4,1 INTRODUCTION

It was shown in the previous chapter that if all the node voltages
are accessible, then in the case of linear circuits, there is a linear
relation between the c¢ircuit parameter changes and certain voltage
changes. Furthermore, one can generate an appropriate number of tests
such that the system of equations has a rank equal to the number of
unknown parameters. In practice, it may not be feasible to measure all
node voltages, i.e, a subgroup of nodes in a circuit may be accessible,
while the rest of nodes may not. By an accessible node, we mean that we
can measure its voltage, and we can apply any type of excitation to it
(either current or voltage source). Consequently, we expect to have
less test data than we need to solve for the c¢ircuit parameter
deviations, that 1is, the number of unknown parameters will exceed the

number of equations when only a single test frequency is assumed.

4.2 FAULT IDENTIFICATION UNDER INSUFFICIENT TEST DATA

Consider the linear circuit N in Figure u4,1, which has b
parameters, and m accessible ports, where m<b. Assume that the circuit
N is excited at port 1 with a current source, and the voltages of all
the accessible m-ports are measured at the same frequency. Consider,

also, the adjoint circuit N of the circuit N, Figure 4.2. Assume that
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we excite the adjoint circuit at the jth port by a 1A current source.

Then Eq. (3.14) becomes

b -

which could be rewritten as

b y ) &p AV
z ij (1#ik —k = —pJ oo-o(uuz)
k=21 "k xk Pk ij

v
where Pk and xk are as given in table IT, and SPpJ is the first-order
k

normalized sensitivity of port voltage ij with respect to parameter Pk
and is given by (15]

3V . P
B Tk ceea(8.3)

P
k 3 K ij

v
Pl .
SP =

Table II also gives expressions for the first-order sensitivities for

different circuit elements and the circuit constraints for both test and

adjoint circuits,
Since we assume that we have access to only a subgroup of the
circuit nodes, then this means that we cannot measure all branch

voltages, i.e., some of the Xk's in Eq. (4.2) will be unknown. In
4x

this case, we have to include the quantities (1 + 'iE ) with the
k
unknown vector, i.e.,we consider that the unknowns are the
Axk APk
(1 + -f; ) -?;'s. By doing so, we restrict our measurements to

one and only one test condition, i.e., the same excitation at the same

frequency.
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TABLE II THE CIRCUIT CONSTRAINTS AND THE SENSITIVITY EXPRESSIONS
FOR THE DIFFERENT CIRCUIT ELEMENTS.
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Then, we can obtain only m linear independent equations, if we let

Jj=1,2,.....,8 in Eq. (4.2). They have the following form

p— -1r
ax
NI IS 11 P -A-Ej 4%
1 Pa Pb A§1 P1 vp1
a A
sz o2 Vel 22) P2l | MVp2
o s 2 P2 | Vp2 (4.4)
) . L[] Ai A A.
sopm 'pm sopmf [y o —2) ZFo| [Zom
P1 PZ L] . L] . Pb x P
b b vam

Eq. (4.4) in an under estimated system, which means that there are
infinite number of solutions to it. In order to overcome this
difficulty , we will assume that we have only a-1 or less faulty
elements, ' This assumption is reasonable from the practical point of
view, since usually only a few elements in a circuit become faulty.
This means that the unknowns corresponding to the faulty elements will
be nonzero , while those corresponding to the nonfaulty elements will be
Zero. Hence, the problem will reduce to the following. Given m linear
equations in b unknowns (b>m), where m-1 or less of those unknowns are
nonzero, while the rest of them are zero. We need to point out the
nonzero unknowns corresponding to the faulty elements.

This problem could be solved by considering a subgroup of m
elements in Eq. (4.4), and solving for them. Then, by doing so for all
different combinations of @ elements, the faulty elements may be
recognized as the group of m-1 (or less) elements which has a consistent
solution among the obtained solutions.

Another alternative and computationally more efficient way is by

deleting a subgroup of m-1 unknowns in Eq. (4.4), so that we obtain
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just one equation in the rest of the b-m+1 unknowns. Then, if the
right-hand side of this equation is zero, the deleted unknowns may
correspond to the group of faulty elements. Note that, having a
consistent solution in the first way is only a necessary condition, but
it is not sufficient. This means that , in some situations, we may have
more than one group of m-1 elements satisfying that necessary condition.
Such situations depend upon the structure of the circuit and the
location of the faulty elements with respect to the location of the
accessible test nodes.

The following is an example to show that this approach may detect
multiple faults, i.e., either detect the faulty elements or isoclate them

in a part of the circuit.

Exagple

Consider the resistive ladder circuit in Figure 4.3, where we have
access only to three nodes, as well as to the reference node (m=3).
Then,we can have only three equations under the same test condition, and
we can only detect or isolate up to two faults. The three equations

will be

1234567891011 1213

TXXXXXXX XXX X_X X! (8V51/V54)

2 [Xxx XX XHXXX X X Xflus= [(&V o/ 5) ceea (8.5)
X X

311 XXXXXxxx ¥ X X (Avp3/vp3)

'
where an X in the ijth position will be SgP* , and y corresponds to

J
the unknown vector of dimension 13.
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Fig. 4.3 Example of a resistive ladder circuit with only
three accessible ports.
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Since the three adjoint circuits are excited by a 1A current source
at nodes 1,2 and 3, respectively. Then, we can see that the two
portions of Eq. (4.5) boxed by a solid line are dependent, and the same
thing applies to those with the dashed line. This means that, if we
have a double fault , such that one of the faulty elements is in the
group {R,,R?_,.....,R.,}, and the other is in {R,,Rg,.....,R 3}, then, the
faulty elements can be identified uniquely using the above deletion of
variables scheme. However, if we have a double fault, such that the two
faulty elements are in the group {R1,R2,.....,R7} {er
{R7,R8,......R13}), then any two elements of this group will appear
faulty using the same scheme. This means that, in this case, we can
only isolate the double fault in a part of the circuit. In order to
narrow down the group of possibly faulty elements, more accessible nodes
in this part of the circuit are needed.

In the next section , we explain this method for the case in which
only a single fault is assumed and only two nodes plus a reference node

are accessible.

4,3 SINGLE FAULT IDENTIFICATION

The single fault identification problem is a common problem. In
this case, it 1s assumed that one and only one fault occurs in a
circuit. This is sometimes the most likely situation in practice.
Using our approach, it is enough to have access to only two nodes in the
circuit (input and output nodes, say) as well as a reference node in
order to i{dentify a single fault. An algorithm for single fault
identification will be presented in the next section. Another modified

algorithm will be presented later to handle the problem of single fault
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identification if the nonfaulty elements are within a prescribed

tolerance from their nominal values.

4,3,1 SINGLE FAULT AMONG ZERO-TOLERANCED ELEMENTS

Here, we assume that we have only a single fault, while the rest of
elements assume their nominal values. Since we assume that we have only
two accessible ports in the test circuit (m=2), then we have only two
linear equations in b unknowns. In addition, we know that one and only
one unknown is nonzero, while the rest of the b-1 unknowns are zero.
Assume that the faulty element is Pl , where 1<1<bd. Then, Eq. (4.3)

will reduce to

v aX, 4° AV
spp‘ (ems) L . 21 ..(4.6-a)
1 X, P Vo
and
V.. 4&X, ap, Ay
5,P2 (o) —L o P2 L850
L T P Vg

The solution of Eq. \4.5-a) must be oconsistent with that of Egq.

\4.06-b). Hence, for the faulty element, we nust have the Iollowing

relationship

v : ;
VoY) ] (AV,57V ) "
- = el
s p! -~ P<e
°Pl Sp

1

This relationship could be used to Jetermine the value of 1, i.e

(a4
7]

identify the faulty element, A further step after the identification of

PE— [N
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the faulty element would be the calculation of the value of the faulty
component. This would be very straightforward if we could measure the
corresponding AX,. However, this may not be possible, since we have
access to only two ports of the circuit. Hence, we will have to look
for an alternative way.

An expression for AX, could be obtained through the bilinear
transformation. Since any response in a circuit can be written in terms
of one parameter in the bilinear form [6], then X, could be expressed in

terms of Pl as

A Pl + B
xl B me—— ..-.(’4.8)
C Pl + D
where A,B,C and D are constants that do not depend on Pl' with the
praoperty that
AD‘BC*O o---(ung)

Moreover, since Xl is the controlling voltage or current for element Pl
(Table I), then it can be easily shown that always A=0 , for any circuit

element. Then Eq. (4.9) reduces to

B
Xl =~ “.(ui10)

Cpl-o-D

Now, assume that only the parameter Pl changes to P1+A Pl

consequently X,—— X,+ 4X, , which will be given by

o U e g V1P A7 P T b T




B
Xl-c-éxl: o (8.11)

By dividing Eq. (4.11) by Eq. (4.10), we get

AX 1
1 + L = e (4,12)
X AP
1
v (=)
Py
where
cp
1
Y] 3 — el (B.13)
CPl + D

From Eqs. (4.6),(4.7) and (4.12), we have

o P Av v av
— = Rs My (=B (a2 SRCRTY
oo, 1 Vs

which is an expression for the relative error in the parameter Pl' The

constant X7 could be calculated in two ways. The first way, is by

rewriting Eq. (4.13) as

B
D CP.+D X l
¥q=l= =1- L .. lonominal e . (4.15)
CPl+D B X1|Pl=0
D

which needs, in addition, an analysis for the oircuit with nominal

values except the parameter Pl is set to zero.

The other way would be by partially differentiating Xl (in Egq.

am— L
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(4.10)with respect to P

3%,  -BC
= oo (8.16)
3P, (CPy+D)?

Then, we use Egq. (4.3) to get an expression for the first-order

sensitivity of X, with respect to P,.

X, 93X, p -C P
Pl = -—l—lz ——l e (8.17)
1 3P X, CPy#D

S

From Eqs. (4.13) and (4.17), we see that

o s -S l..(u.18)
1 Py

which also needs, in addition, an analysis of the adjoint circuit with a
1A current source connected across Xl as an excitation. However, this
way is more computationally efficient than the first way , because the
second way does not need another LU decomposition, while the first way

does.

Based on the previous results, the algorithm for single fault

identification will be as follows.

Ihe alzorithm:
v
(1) Calculate the first-order sensitivities SPp1 and S.P2
k Kk
K21,2,00000,b.

(2) Measure the quantities avp1 and AVp2 under the same test

condition.
(. 41 Vo
(3) Calculate the quantities Ce = .VB_)/S P and
p1 Pk
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av v
cl2), (-vﬂi)/spia © KS1,2,00000,00
p

(4)(a) If lcﬁ‘)-c;2)|=o :for all Kk=1,2,......,b, this means that

there is no fault.
(b) 1If IC§1)-0§2)|=0 ;for some i=1,2,00..,4P , where

i i

1<-<ﬂ-»l1,12,----:1-p,$b , and where Pl1’P12""""Plp are parallel

elements, and |c£‘)-c£2)|£o ;for K=21,2,cce0eeyb and
k153-1,12,....,lp , this means that one or more of the parallel
group Pl1’P12""""Plp are faulty.
(¢) Otherwise, there is more than one fault,
(5) Calculate @) by either of the following ways
(a) Solve the original circuit with nominal parameters except that
P1=0 and use Eq. (4.15), or,
{b) solve the adjoint circuit with a 1A current source across Xl as
an excitation, and calculate the first-order sensitivity of Xl
with respect to P, i.e., 5:1 , then, use Eq. (4.18).
(6) Calculate the relative error in the faulty parameter Pl using Eq.

{(4.14) for either j=z1 or 2.

Camputationally, the algorithm needs the analysis of one original
and three adjoint circuits for the identification and calculation of a
single fault. However, since the nodal matrix for the adjoint network
is the transpose of that for the original network, then, we need to
perform the matrix inversion or LU decomposition only once, The rest of
calculations will be straightforward . This indicates that the
algorithm is highly computationally efficient with no required storage

and with minimum measurements, on the contrary to the fault dictionary

approach.

L

R . DU SR |



77

In the next section, we will modify the same algoritm to detect
single faults when the rest of parameters are within a prescribed

tolerance from their nominal values.

4.3.2 SINGLE FAULT AMONG NONZERO-TOLERANCED ELEMENTS

Here, we will require less stringent assumptions on the faulty
network. Specifically, we assume that we have only a single fault,
while the other element values are within a specified tolerance (say & )
from their nominal values. Of course, we require that the relative
error in the faulty parameter be clearly distinguishable from the
relative error in the good parameters. This Vsituat:ion is much more
practical than the case discussed in the previous section., This is
because a manufactured circuit will not have component values equal to
the nominal design values, but only within some specified tolerance of

their nominal values. In the following, we will see how we may identify

the faulty parameter under the above assumptions.
Assume that the faulty parameter is Pl, where 1<1<b. Assume also

that all the other parameters are within some tolerance of their nominal

values, for example

Apk
| —| <8 ;for all k=1,2,....,b and kél e (4.19)
P
and where § is the maximum allowed relative tolerance, & 20.
Next, we will calculate the change in the response xk of the
parameter P due to the change in all the parameters. We will assume
that first-order sensitivity values can be used to obtain a reasonable

estimate of the effect of the deviation of the good parameters from
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their nominal values. Thus, we write

b 23X
aX, 2 v - AP.+ AX c.l.(4.20)
K gghgp, 1T
i1£1

where AX,, is the change in X, due to only a change in P By dividing

l.
both sides of Eq. (4.20) by X, then adding 1 to both sides, we get

AX 48X b X, 4P
1+ —x =(1+ kl)+ b Spk(—i) ..(8,21)

X X i=1 i

K k if1 i

X
where SE,k is the first-order sensitivity of Xk with respect to Pi,
i
given by Eq. (4.3).
As stated in the previous section, that we can express Xk as a

function of Pl in the bilinear form as follows

A P.+B
X kK 177k

k = ;k=1,2,ouoo.,b ...(R.ZZ)
CkPl+Dk

Note that A,=0. When only Pl—->Pl+ APl, then X —X +4X, , and we
have

A (P,+ AP,)+B
k\F1

xk+ Axkl = l k ;k=1,2,-....,b ooo(u.23)
Cy(Py+ AP;)+D,

Dividing Eq. (4.23) by (4.22), we get

AX 1+ 8, (4Py/Pq)
1"' kl - k l l ;k=1'2'0'|co'b ooo(unzu)
Xe 1+ 2 (8P /P))
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where
C, P A, P
k
@ = ---i- ,and Bk =z ..E._i. .. (4.25)
CiP1+Dy AP +B,

Now, we will try to get a relationship between o) and ek' By

partially differentiating X, with respect to P, in Eq. (4.22), we get

- 2 . ( . )
o u 26

From Eqs. (4.3),(4.22),(4.25) and (4.26), we get the relationship

Xy
B = a + sPl .o (8.27)

Note that B,=0, which gives Eq. (4.18), Substituting from Eq. (4.27)

into Eq. (4.24), we get

Xk
6%, Sp, (AP1/Pp)
‘.4-—— =1+ ...(4.28)

Again, substituting from Eq. (4.28) into Eq. (4.24), and then, into

Eq. (4.2), we get

X

k
> v, %, PP b g AP, 4V,
k=1 "k 1*“k(AP1/P1) i:i i Pk VpJ

X
Eq. (4.29) can be rewritten as (using<yl=-spl)
1

A




Apl 1 b xl(APi (Avpj/vpj)

( )[ + T SP —)]5
P, 1+, (4P,/P,) i=1 "1 P v
1 1" 1t 171 i s PJ
P
1
Xy
1 by 4R SPl(APl/Pl) b X 4P
- enm—— stJ(—)[1¢ + z SP (_)] ;j=1’2 "'(u'30)
v k=t "k P 1+, (4P, /P,) i=1 1 P
S.Pud1 k KLU i L
Pl
Next, we will si&xplify Eq. (4.30) using the assumption that the
AP
absolute relative error in the faulty parameter -p-l' is
1

distinguishably greater than the maximum tolerance value .
Specifically, we will study two cases. In the first case, we will
consider a positive fault, i.e., the faulty parameter has a value above
its nominal value. In the second case, we will consider a negative

fault, i.e., the faulty parameter has a value below its nominal value.

Lase 1
Here, we assume that the faulty parameter has a value greater than
i:: nomipnal value, i.e., 0<A%< (<~ Moreover, we assume that
|—P%..| is high enough, such that
AP
| ak(-?%) I>> 1 ;at least for k=1,2,....,b and kil L (831)

Using this assumption Eq. (4.30) reduces to
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AP 1 b X, AP (av /V
—) 1 Pl(_i)]___._L
P, e, (&P,/P ) i- i p
1l
X
S k
1 b vy o3 Pl b A 4
- —2 s (—)[1*—* P (—)] ,J 1 2 oao(uo32)
v_.ks1 'k P o 131 ip
s Pdya1 ko Tk 1 t
Py

Consider the tem

X X
k k
S, *kSe, 8 xklPl= o
1¢ == = S emm 3 -o(u033)
Ay Yy oy X¢lnominal

In deriving Eq. (4.33), we used Egs. (4.22),(4.25) and (4.27).

Substituting from Eq. (4.33) into Eq. (4.32), we get

() - ~ (3 3 il
Ql E Cl - dl 1J=1,2 oo (U.38)
where
Q, 3 (=) + T S ()] ... (8.35)
Pl 1*a1(APl/Pl) igl i Pi
and
av_./v. )
c,d) - B p) v (.36)
SVPJ
Py
and
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X
Iy
1 b v, ar, xlp o b X, AP
v k=1 "k P %] i=1 "1 p
s Jk£1 kK k! nominal 1f1 i Ce
1
Let
Dl(J)zmaxldl(j)l
X |
1 kK'P,=00
_——zalspj\[l 1 |+6z\s“\] v (8.38)
ks1 Tk X, | i=1
'SPPJ kil K'nominal i1
Lase 11

Now, we assume that the faulty parameter has a value less than its

AP
nominal value, 1.e., -1S.T<o. In addition, we assume that

AP
l' is high enough, such that

APy

-1 oo.(uo39)
Pl

Hence, Eq. (4.30) reduces to

AP, 1 ap (Av )
(=3¢ fg S X1 ZtyjamredVes’
P, 1eqg (AP /Py ) i=1 i P v oo
1 11 ial i stj |
1 <
sk ‘5
1b Vo AP Py b X ARy ’.
- e— 2 s k (—)[1-—+ 2 s i(—)] ’J=1,2 ..-(u.uO)
v k=1 P teqy, 1i=1 P
SPkaﬂ. k ki L

1

Consider the term
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X X
sMk ) K
P, ! (“k*spl) 1-8, xk|p1=o
1= = = = e (U UY)
1=y -% =% Xl nominal

In deriving Eq. (4.41), we used Egs. (4.22),(4.25) and (4.27).

Substituting from (4.41) into (4.40), we get

v s gttt e < o VA e P o el .t

i Q) 2 ¢ oo yarp2 BCRT)
! where Ql(J) and cl(J) are as given by Eqs. (4.35) and (4.36),
% respectively, and
}
i
|
‘ 1 b V_. AP x‘r<'1’-0 b X, &P
i SVDJE:I kP Xelnominal i:; topy
P
r Let
(
E J)-maxlel(J)|
b v J xk Pl= 0 b Xk
= T 8|5,7|(] I+ 8 £ Isp*| BNTRTS
lsppj k=1 k xk'nominal i=1 i

k#£l il

1

From Egqs. (4.34) and (4.42), it is necessary for the faulty

parameter Pl to have almost equal values of Ql(J) for j=1 and 2, i.e. ,

Ql(1)§ Ql(Z), under case I or case II. This is btecause the quantity
&)
9

does not depend upon the value of J , as seen from Eq. (4.,35).

There will be a wminor problem when we try ¢to calculate the
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quantities dl(J) and el(j) using Eqs. (4.37) and (4.43), respectively.
This is because we do not know the actual value of f;% :
i=1,2,.....,b and ifl for the good parameters. However, we do know
that Ie;ilg.é; i21,2,..+..,0 and 1i#l. Hence, we can calculate the
maximum possible values of both dl(J) and el(J), which are given by Egs.
(4.38) and (4.44). Then, Ql(J) should be somewhere in the interval
[Cl(J)-Dl(J),Cl(J)+D1(J)] for case I, and for case II, Ql(j) should be
within the interval (C,(¥).g (3 ¢, (Ig (7. this implies that we
should have an overlapping of the two intervals corresponding to j=1 and

2, for case I or case II. A necessary and sufficient condition for that

overlapping requirement is that

IC1(1)-C1(2)| S_le1)+Dl(2) ;for case I e..(8.45)
and

|C1(1)-C1(2)|_$ El(1)+81(2) ;for case I e (4. U46)

It is not easy to calculate the exact value of the faulty
component, because we do not know the actual value of e;% ;
i=1,2,.....,b and ifl. However, one can have an expected value of it,
by taking the expectation of both sides of Eq. (4.34) and Eq. (4.42)
for case I and case II, respectively. Or, one can obtain a range where
the faulty parameter value will be, by using Eqs. (U4.34),(4.35),(4.36)
and (4.38) for case I, and Eqs. (4.42),(4.35),(4.36) and (4.u4) for

case II.

Based on the previous results, an algorithm for single fault
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identification among nonzero-toleranced parameters will be as follows:

Ihe Algoritha
v 1 v 2 Vk
(1) Calculate the first-order sensitivities §_P° y S P and s H
Pk Pk Pi
for all k,i=1,2,.....,b.
(2) Measure the quantities Avp1 and Avp2'
(3) Calculate the quantities Ck(1) and Ck(Z) ; k=1,2,.....,b using Eq.
(4.36).
(4) Solve the original circuit with nominal values except sz © once
and again with Pkg 0. Do this for k=1,2,.....,b.
(5) Calculate the quantities D (1) D (2),5 (1 and E (2) ;  for all
1 1 1 1
1=1,2,.....,b, using Eqs. (4.38) and (4.u4K%).
(6)(a) 1 1c Mg @y (Mep, (@) | and 16, e, P, Mag, 2
for all k=1,2,.....,b, this means that there is no fault.
() 1f 1, Ve, @ Map (1 or 1e, Mg, Pice, (Mg, 25 for
only k = 11,12,....,1p, where 1511,12,....,1993 and ‘_J
Pl ,Pl ,....,Pl are parallel elements, then this means that one
1 2 p

or more of Pl1’Pl yeesesPp are faulty.

2 p
(¢) Otherwise, there is more than one fault, or the algorithm fails
because the assumptions made are not met, e.g., a small single

fault value relative to the prescribed tolerance value.

We see that in order to add the feature of single rfault
ldentification among nonzero-toleranced parameters, we have to pay for
extra computations.

In the case where the test circuit is originally excited by a

voltage source at the input port, some minor modifications are
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necessary. The corresponding first adjoint circuit will be excited at
the input port (port 1) by a =1V voltage source, while the second
ad joint circuit will be excited by a 1A current source at the output

port (port 2) with port 1 short-circuited. In addition, the Juantities

v Av I Al

Spp1 and -ﬂval will be replaced by sPp1 and 2l
kK pl K oB|

respectively.

If the algorithm fails in a situation, where some parameters of the
circuit are within some tolerance of their nominal values, then another
run may not fail by switching ports 1 and 2 from the excitation point of
view. This will depend upon some factors; a) first-order sensitivity
values, D) structure of the circuit, ¢) location of the single fault
with respect to the exciting port, and d) the relative error in the
faulty parameter with respect to the specified tolerance.

The method is also capable of identifying catastrophic failures,

especially short-circuit faults. For example, if an admittance branch

AYl Avl
Yl becomes short-circuited, then —y-=-® , also 1+ == =0, but
av aY 1 1
the product (1 4--—V—l )"T' will have a finite wvalue since
AV, Ay ly 1
“*‘vi>-73 - (Ava/VpJ)/sva ; j=1,2, provided that
v 1 1 "1
5,74 40
1

Finally, a dec test and an ac test may bDe able to separate bhetween
elements that are in parallel in the ac circuit, but are not in the da

circuit.

4.4 MULTIPLE FAULT DETERMINATION AND ISCLATICN SCHEMES
Scme other schemes different than the scheme Jdiscussed above may be
used when some of the nodes in a circuit are inaccessible. As seen

vefore, the technique used in tne previous section is most suitable for
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single fault identification. Another technique may be used for fault
determination and isolation when the numver of accessible nodes is more
than the number of inaccessible nodes. It also can be used for the
fault isolation in a circuit composed of connected subcircuits, e.g., a

card of IC chips connected together,

4.4.1 DETERMINATION AND ISOLATION OF FAULTY SLEMENTS IN A CIRCUIT WITH
FEW INACCESSIBLE NODES

The following technigue will be most useful for circuits with the
number of inaccessible nodes fewer than the number of accessible nodes.
In such situation, deviation in some elements could be determined
exactly, while deviation in the other elements cannot be determined, but
we can determine whether or not a fault is present. In fact, the number
of elements that could be determined exactly depends upon the number and
location of the inaccessible nodes relative to the accessible nodes in a
circuit, as well as the structure of the circuit itself. In zeneral,
the less the number of inaccessible nodes, the more elements that can bde
determined exactly.

Consider a circuit N with b branches, and let the set of ncdes
{31.n2,.....,n1} be the set of accessible nodes each of which 13 a one
terminal of a branch whose other terminal 1is an inaccessibdle node.
Then, we can split the circuit N into two subcircuits N1 and Ng,Figure
4.4, such that N, sontains all the inaccessidle nodes together with the
elements oconnected to those inaccessible nodes and every element
connected directly bLetween any two nodes of the set {n1,n., ..... L0 Y

While the subcircuit N. contains the rest of the accessidle nodes

-

[

together with the rest of branches,




N,

Fig. 4.4 The circuit N is divided into

FP-6629

two subcircuits N1 and .\IZ.
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Next, we will show how we can determine exactly tlie element

deviations in the subcircuit N,, and decide whether the subcircuit N,
has one or more faults, or not., This c.ould be achieved through the
choice of the different adjoint circuits. Specifically, by appropriate
short-circuits and exciting appropriate nodes with equal voltage sources
such that the voltages across all the elements in subeircuit N, are
zero. Then, the test data and these different adjoint circuits could be
used to generate a number of linear equations equal to the number: of
elements in subcircuit N,. Solving these equations will yield the
deviation in the elements of N,., Another adjoint circuit or more can be
used along with a set of measurements to generate other equations. From
the obtained solution for element deviations in "2 and these last
equations, we can decide whether the subcircuit N.| has one or more

faults or not. This technique will be demonstrated through the

following example.

Example
Consider the simple circuit shown in Figure 4.5, where only node 6

is assumed to be inaccessible, The circuit is split 1into two

subcircuits, N; and N,, indicated by the dashed line in Figure 4.5.In

this example, the set of ncdes {ny,n,,.....,m} is {4,5}. The different
adjoint circuits are as shown in Figure 4.6. It is clear from Figure
4,6, that the first four adjoint circuits are chosen such that the
voltage across the elements of subcircuit N, (elements 1\10,1!11 and R1z)
remaln zero. By associating these five adjoint circuits with three sets
of different measurements (e.g. by exciting the test circuit at nodés

1,2 and 3, then, measuring the accessible node voltages) we obtain the
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Fig. 4.5 Example of a circuit with one inaccessible node.
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Fig. 4.6 Five adjoint circuits for the circuit of the example.
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following system of linear equations.

'
s ¥
) ]

15t ady. okt.e2 t.d. J[X
X

oL
i |
,1
[2]
-
4

2nd adj. okt.+2 t.d. XX AG
X Xt

3rd adj. ckt.+3 t.d.
{ eo o (U, UT)

bgh adj. ckt.+2 t.d., f|X

[~
Q
On
"

V'5¢ 54 D¢ p¢ D¢ D¢ b4 2¢ ¢

X
55k ad). okt.s1 t.d. {'_x

whereAuia(vio-AVi)AGi, for 1211 and 12, and an X means a nonzero entry,
and a blank means a zero entry. Solving the first nine equations of Eq.
(4.47) yields 8G,,4G5,. 000 ,AG,;J . Then, by substituting
AG1,AGZ,.....,A69 in the last equation in Eq. (4.47), we check whether
010,611 and 612 may be faulty or not (provided that the linear
combination we have in the last equation for AGw.Au“ and au,, will not
result in zero right-hand side value). Note that for this example, we
can generate two more equations in AGm,Au11 and Au12 using two other
adjoint circuits (by exciting ports 2 am! 3 each at a time by a 1A
current source). Then, we can solve the last three equations ¢to
determine the values of AG1°,AU11 and 445 under the corresponding test
condition. This will determine AG,O and whether G,, and/or 012 are

faulty or not,

4.4,2 FAULT ISOLATION IN CIRCUITS COMPOSED OF CONNECTED SUBCIRCUIT
BLOCKS

The same scheme can be used for the fault isolation at the block

level, i.e.,decide whether a block in a circuit is faulty or not. This
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"is mainly based on the idea that a block with few accessible nodes cou.id

be collapsed by means of an equivalent transformation to a circuit with
all accessible nodes. However, we do not actually have to perform that
oquivalent transformation. To illustrate this technique, we consider

the following example,

Example
Consider two single-input single-output subcircuits N1 and "2

connected in tandem as shown in Figure 4.7. For simplicity, assume that
N, and “2 are linear passive networks. Assume that the input node (node
1); the junction node (node 3), and the output node (node 4) are
accessible. Also, assume that, in subeircuit N1, there is only one
impedance (Zu) connected to the junction node 3, with the other end node
2 being accessible, as well. Then, by means of equivalent
transformation, we‘ can model subcircuit N1 ,excluding Zu, by an
equivalent TII-network, and subeircuit Nz by an equivalent rr-network,
Figure 4,8. By applying the same approach done in the third chapter, we
can determine the faults in the equivalent impedances 21’z2""“’z7'
Then, if we have faults in one or more of {21,22,23,21‘}, this implies
that the subcircuit N, is faulty. Similarly, if we have faults in one
or more of {25,26,27}, this implies that the subcircuit N, is faulty.
The assumption that we should have node 2 accessible is important.
This is because, if we do not have this node accessible, this means that
the impedances 23 and Zs will be in parallel, whic_h could not be
separated under single frequency or dc measurements. Alternatively, we
could assume the same assumption for the subeircuit "2 instead of N,.

In general, we need to assume that, in one of the subcircuits, we have
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FP-442¢

Fig. 4.7 An example of two circuits connected in tandem.
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accessibility to all the nodes which are the other end of all the
elements connected to the output nodes of that subeircuit.

The same technique can be used for general situation, where we have

more than two subeircuits connected in different ways.

!
{

{

Ve
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CHAPTER 5
FAULT ANALYSIS IN ANALOG CIRCUITS
WITH NONLINEAR ELEMENTS

In the previous chapters, the work was concentrated on linear
circuits. However, we can extend the same approach to deal with
circuits containing some nonlinear elements. This is simply because of
the fact that Tellegen's power theorem is true also for nonlinear
networks., In this case, we will see how to reformulate the equations in
order to employ the idea of replacing each nonlinear element by its
equivalent dc linear elements at that operating point. Howsver, care
should be taken when generating our linear equations using different
measurement data. This is because the operating points of such
nonlinear elements depend upon the measurement conditions. This
difficulty may be overcome by the proper choice of adjoint circuits to
isolate, first, the linear elements, then, the nonlinear elements, each
at a time, This will yleld the deviation in the linear elements, as
well as one point on the characteristic of each nonlinear element.

As shown previously, assume we have a network N with b branches and
@ ports, where {vk’Ik} is the voltage across and current through the kth
branch, respectively. Also, assume we have the adjoint circuit ﬁ with
{;’k'ik} as the corresponding voltage and current of its kth branch,
respectively. Assuming that both circuits obey Kirchhoff's laws, we can

apply Tellegen's power theorem to get

L AV W LT SR FTI L A T v —; Dy

& P it M it i
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b . - m L “
- - LI IR I ] .1
0s kE1 (kak kak)+J;z1 (VIpJIp:j va p,j) (5.1)

where VpJ and IpJ are the jth port voltage and current,'respeetively.
Also, we apply the same theorem to the faulted circuit and the adjoint

circuit to get

b . -
Z 1tvk(1k+uk)-(vk+4vk)1kl
ﬂ a ~
+ 351[VPJ(IPJ+AIPJ)-(VPJ+AVPJ)IPJ]= 0 eeee(5.2)

Rewrite Eq. (5.2) as

b . b -

;E1Vk(1k+41k) z k51(vk+Avk)Ik
| . -
JE%[VPJ(IpJ+AIpJ)-(VpJ+AVPJ?IpJ] eeee(5.3)

By adding Eq. (5.1) to Eq. (5.3), we get

b‘ ® - -
T V(I +AI,) = § (AV I 4V, I.)
&y ki heril) = AV DT D
n - -~
- J}’.‘.1(Avpjxpj.vpjupj) veee(5.4)

For simplicity, assume that all the circuit elements are passive,

Then, for linear elements we have

and for nonlinear elements, we have
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Ikak(vk) ,and Ik+AIk=Fk(Vk+AVk) s -.(5-6)
where fk is the nominal nonlinear relation between current and voltage,

and Fk is the corresponding faulty nonlinear relation, for the kth

element. Then Bq. (5.4) will assume the form

Wxae veee(5.7)
where
v :if the kth element is nonlinear
= {a .eee(5.8)
A Vi (Vi #dV, ) ;if the kth element is linear
and
F (V, +4V,) ;if the kth element is nonlinear
xi = k k k ....(5-9)
(Y, +8%,)  ;if the kth element is linear
and
b .. m . . !
= A - (5. :
e k§1( Vklk*"klk)*J§1(AvaIpJ Vp381py) +++(5.10)

Eq. (5.7) is linear in x, although we have some nonlinear elements
in the circuit N. By generating b equations of the form of Eq. (5.7),

we can solve them to obtain the deviation in the linear elements and a

point on the I-V characteristic of each nonlinear element. This system

i of linear equations could be obtained by associating different

measurement data with different adjoint circuits. Since, for a
nonlinear element, the corresponding unknown is its ocurrent, which
depends nonlinearly upon its voltage, then the value of that unknown
will vary under different test conditions. Hence, special choice of the

adjoint circuits should be made in order ¢to 1lst the unknown,

| —d
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corresponding to each nonlinear element, appear in only the equations
generated under the same test condition. Appropriate short-circuits and
equal voltage source excitations could be used to generate those
different adjoint circuits. The following example will illustrate such

techniques.

Example

Consider the ladder circuit shown in Figure 5.1, which has seven
linear resistors and two nonlinear resistors. The different adjoint
circuits are shown in Figure 5.2. The first adjoint circuit isolates R1
and Rz. The second adjoint ecircuit isolates R3 and Ru. The third
adjoint circuit isolates Rg,R; and R,. The fourth adjoint circuit
isolates N.L.8, and the fifth adjoint circuit isolates N.L.9. For this
example, three different test data are required. They may be obtained
by exciting nodes 1,2 and 4 by a 1A current source, each at a time. By
associating these adjoint circuits with three different test data, we

get the following system of equations.

- -
First adjoint circuit [[X X! G,+aG, | [x7
+ two test data X X GZ«.-AGZ X
Second adjoint circuit X G3+AG3 X
+ two test data XX _ GR*AC'u X
Third adjoint circuit XXX X¥YXd 5+4Gs [ X eeo(5.11)
+ three test data LXXXXXXi 65+666 X
XXXXXXXi +AG X
bth adj. ckt. +one t.d.i XXXXXxxx F8(38+A38) X
Sth adj. ckt. +one ¢.d.{{IX X XX XXX X F9(V9+Av95 X
3 -t e - J

where an X means a nonzero entry and a blank means a zero entry.
Solving the first seven equations in Eq. (5.11), we get
(G1+AGL),1=1,2,....,7, while solving the last two equations, we get the

current through N.L.8 and N.L.9 at the corresponding test conditions.




Fig. 5.1 An example of a circuit with two nonlinear elements,
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Fig. 5.2 The different adjoint circuits for the circuit of the example.
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These currents will represent a point on the I-V characteristic of each
nonlinear element, More points could be obtained by generating

different equations under different test conditions.

It may be impossible to solve for some elements in some structures.
Generally, the more nonlinear elements relative to the number of linear
elements in a circuit , the more difficult it is to solve for the
elements. Note that this technique may be applied in the dc test of a
e¢ircuit with nonlinear elements, e.g.,diodes, transistors, etc. Then,
after knowing the operating points for such elements, small signal
models could be used for those elements in preparation for the ac small

signal test,
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CHAPTER 6

NUMERICAL EXAMPLES

In this chapter, some numerical examples are presented to
demonstrate the application of the single fault detection algoritmm in
analog circuits. These examples were selected to cover almost every
practical situation. They were solved on the DEC-10 computer system,
which has a 36-bit word, using single precision aritmmetic. In each
example, the original circuit and the associated different adjoint
elrcuits wer"e simulated, Also, the faulty circuit hs simulated under

some different fault conditions as a substitute for the measurements.

Example 1:

Consider a 9th order Butterworth passive low pass filter [22] with
a 3dB cutoff frequency of 1 rad/sec, as shown in Figure 6.1. Assume
that only the input port (port 1) and the output port (port 2) are
accessible. The nominal circuit parameter values, and the normalized

sensitivities of Ip1 and vpz with respect to each parameter at = 0.5

rad/sec are given below.
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Fig. 6.1 9th order Butterworth passive low pass filter.
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Iny p2
Parameter(P,) Nominal Values Sp Sp
; ;
G, 1.0000 0 0.5001752-30.0010239  0.5001751-30.0010239
C, 0.3473 P =0.0005329+30.0867323  0.0001778-30.0867946
Fq 1.0000 H  0.0873528+30.2427349  0.0004661+30.2578014
Cy 1.5320 F 0.3474672+30.2239710  020003354-30.4143348
Ty 1.8790 B 0.5085224-J0.1778165 -0.0005445+3.53792889
Cs 2.0000 F 0.0990011-30.5785376 -0.0012198-30.5871540
Lq 1.8790 H  -0.4168574-30.3381497 -0.0005445+30.5379289
Cg 1.5320 F -0.U4042586+30.0937254  0.0003354-30.4143348
Iy 1.0000 H -0.1628680+30.1993811  0.0004661+J0.2578014
Clo 0.3873 F  -0.0290323+J0.0817944  0.0001778-30.0867946
Gyy 1.0000 Q@ 0.4710304+30.1671885 -0.4998248-30.0010239

A single fault is made in the element C,4 such that Acu s =0.332 F
(relative error = -0.21671), while the rest of elements assume their
nominal values. The corresponding measurements (from the faulted

circuit simulation) are given by
[ 94

|

= =0.0703694-30.0548513

o
-

>
-3
N

and, " s =0,0080688+30.0890596
p

Then, the quantities Diff = IC‘((”-Cl(‘Z)I; k21,2,.....,11 , are

calculated and found to be

Element mrr]
R, 0.3135244E+00
c, 0.9899682E+00
Ly 0.6558627E+00
Cy 0.9680828E-07
Lg 0.2981575E+00
Cs 0.2536567E+00
Lo 0.1807123E-01
Cq 0.3967876E+00
Ly 0.4613443E+00
Clo 0.1276600E+01
Ry 0.2216817E+00

Because of the limited accuracy of a computer, it is expected that
the difference cbrresponding to the faulty element will not be zero.

However, it will be very small compared to the differences corresponding

[N
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to the other nonFaulty elements. Accordingly, from the above values, it
is clear that the faulty element is Cu. The value of'au is calculated
using Eq. (18) of the fourth <chapter and found to be
«0.0003354+30.4143348, Then EqQ. (4.14) of the fourth chapter is used to
calculate the value of the relative error in C,, which is found to be
10.2167102010;0 .This calculated relative error value agrees with the
exact value .

Another single fault is made in the element R11 such that
AG11 2 «0.285T14 Q'I (relative error = -0.285714), while the rest of
elements assume their nominal values, The following is the

corresponding values of Diffk for each element.

Element Difq
R1 0.6566101E+00
C2 0.640100LE+0Q
L3 0.1217T485E+01
Cu 0.4993380E+00
L5 0.2676563E+00
c6 0.5655879E+00
L7 0.3575838E+00
ca 0.3863U88E+00
L9 0.1273844E+01
C10 0.3914174E=-06
311 0.6386881E-07

From the above values, C,, and Ry, appear to be faulty. This is
because they are in parallel. The value of @ is «0,0001778+30.0867946
and the value of 4, is 0.4998248+30.0010239. The calculated relative
error in C10 is 0.0+31.6453459, while the calculated relative error in
011 is -0.2857143+30.0 . This shows that G,y is the true faulty element
because the relative error value must be real. The calculated value of

the relative error in 611 agrees with the exact value .




Examole 21
Consider the simple ¢t
Figure 6.2.

and the output port (port 2)

the neighborhood of a low fr

(relative error = 0,1210762

their nominal values.

l measurements are obtained,

j element is calculated.

the sensitivities of Ip1 and V

ransistor

amplifier circuit (6] shown in

Assume that we have access only to the input port (port 1)

. The nominal circuit parameter values and

p2

squency pole).

)y

The faulted circuit is simulated

Then, the mrrk corresponding

with respect to each circuit parameter

at =z 502 rad/sec are given below (this frequency is chosen to be in

while the rest of the elements assume

I, Voo
Parameter(P,) Nominal Values st s P
L e 2
¢, 0.478 uF  0.2298527-30.4090646  0.2298527-30.4090645
Gy 4 8.420 kQ  0.7171331+J0.3594040 -0.2024641+30.3811799
Gy’ 5.100 kQ  =0.0033117-30.0005916 -0.5814817+30.1780174
Gg 1.000 kQ  0.0591370+J0.0262817  0.8450619-30.2744815
Cs 0.683 uF  -0.0090111+30.0202761  0.0941104+30.2897430
Cq 0.446w F  -0.0016268-30.0000381  0.1588052-30.3660625
Gg 5.210 kQ . 0.0000444-30.0018976 -0.5729964+30.1852427
Gyq 3.610 k0 0.0524703+30.0491858 -0.0373001+30.0280279
B.e 0.000290  0.0000624+30.0000599  0.0011573+30.0000472
0.0288 -0,0510448-30.0467522 0.0731976-30.0162581
: Do 35.75 kQ  0.0063583+30.0031935 -0.0067837+30.0036589
Coe 26.00 pF  -0.0000015+30.0000030 -0.0000017-30.0000032
i where 62'3 is the parallel combination of Gz and G,.
A single fault is made in the element c:7 such that AC7 2 0.054 uF
|
|
|

and the

to each

These differences are given below,
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(a) (b)

Fig. 6.2 (a) Simple transistor amplifier circuit.
{ (b) Small signal model for the transistor. 1

-
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Element Diffk
c, 0.9351468E-01
Ry3 0.101297TE+00
“u' 0.1175077E+Q0
Rs 0.5180476E-01
Cg 0.1510933E+00
C, 0.6867184E-05
Rg 0.1563013E+00
hy, 0.9365815E+00
e 0.3968770E+02
gh 0.5817796E+00
by, 0.5659T35E+01
Coe’ 0.1214649E+05

This shows that C; is the faulty element. Then @, is calculated to
0.8411948+J0.3660625 , and the relative error is 0.1210727+J.0000025 ,

which agrees with the exact value to some accuracy.

Another single fault is made in Cs such that AC6 = =0.68232 W

(relative error s «0.999), while the rest of the circuit elements assume
/

their nominal values. In this case, the differences corresponding to 1

each element are giv'en below.

Element Di.ft‘k
C1 0.621104TE+00
R, 0.7323908E+00
Ry! 0.6174266E+01
Rs 0.31144U48E-06
H 0.9059803E-06
Cy 0. 1447078E+02
Ry 0.1162000E+02
h, 0.6843163E+01
Brg 0.6830308E+01
gh 0.4419309E+0 1
, B 0.4299827E+02
’ Coe 0.9227960E+05 P

This shows that both Ry and Cg are faulty, although only Cg is the true |
faulty element, This is expected because RS and c6 are in parallel.

However, when we calculate the relative error in RS’ we get
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3167.96-33096.43 , while for 06 we get -0.9990002-30.0000004. It is

clear from these values that C6 is the true faulty element, because the

relative error must be real.
A third single fault is made in h , such the Ah,, = 0,02798 Q-l
(relative error =z 999.0), while the rest of circuit parameters assume

their nominal values., The differences corresponding to each element are

given below.

Element pLre,
c, 0.3357031E+01
R, 0.1385590E+0 1
RZ’ 0.2546923E+03
R 0. 1418424E+02
cz 0.4136963E+02
Cy - 0.5215209E+03
RY 0.4499215E+03
by 0.1035142E+02
nte 0.1063342E+05
gh 0.9078709E-06
h, 0.8753567E-05
co 0.1792730E-01

Again, since gm and hoe are in parallel, they both appear faulty.

However, when we calculate the relative error in both gm and hoe' we get
~0.1135017-30.0615357 for gm and 999.000-30.0000357 for hoe' This

indicates that h, is the true faulty element, because the relative

error must be real,

Example 3:
Consider the Sallen and Key low pass filter [23] shown in Figure
6.3. The circuit parameter nominal values, and the sensitivities of Ip1

and sz with respect to the circuit parameters are given below

(ws 1.0E5 rad/sec).
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Fig. 6.3 Sallen and Key low pass filter.
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Ipt Vp2
Parameter(P,) Nominal Values Sp’ SpP

G, 50.00 k  0.6098415+30.6212523  0.6098415+30.6212522
G, 100.0 kQ  0.0862345+30.1465388  1.0713967+30.2674421
Cy 1.070 oF  -0.3109863-30.3293604 -1.3442544-30.0582801
Ch 1.000 nF  0.6149102-30.4384307 -0.3369839-30.8304142
Gg 128.7 k@ 0.0000000+30.0000000  0.0000000+30.0000000
Gg 50.00 kQ  0.1554304+30.1264330  0.6139787-J0. 1446491
G, 37.00 kQ  0.1554304+J0.1264330  0.6139787-30. 1446491
Ag 100000. 0.0000064+30.0000052  0.0000251-30.0000059

The following describes some different single faults together with
their obtained results.

(a) Single fault in G, (exact relative error = 0.020408)
Diff1

0.2387080E-07

o
Calculated relative error = 0.0204082+j0.0
(b) Single fault in G2 (exact relative error = 999.0)

Diffz

0.2002193E-04

~0.0713968-30.2674421

o

2
Calculated relative error = 1000.60+30.3716239

(¢) Single fault in C3 (exact relative error = 99.0)

f
Di f3

@3 = 1.3442544+ 30.0582801

0.1575698E-07

Calculated relative error = 99.0054-30.000099S
(d) Single fault in Cu (exact relative error = 9.0)
Diff, = 0.5215406E-07
@y = 0.3369839+30.8304143
Calculated relative error = 9.0000011+J0.0000017
(e) Single fault in ig (exact relative error = 9.0)
Diff6 z 0.1493024E-07

Diff7 s 0.2252569E-07
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g = 1.1886913-30. 1446491

Calculated relative error in G6 = 8.9999937+30.00000535

Calculated relative error in G

It is clear that both GG and (37 appear faulty.

sIP‘ = st‘ and svpz . szpz

: . However,
G G Gg 7

from the

7 2==9 .0000000-30.00000010

This is because

calculated

relative error value for G,, we can see that if R, is the true faulty

element, then R,T..AR

possible for this example.

Example 4:

7 must be a negative resistance,

which is not

Then RS is the true faulty element.

Consider a Friend circuit realizing a 2nd order high pass notch

filter [24], Figure 6.4.
sensitivities of 1:p1 and V

given below ( w= 3500 rad/sec).

I
Parameter(Pi) Nominal Values SPp1
b N
G, 13.20 K0  =0.0002954+30.7814375
G, 93.00 K1 -0.6904411-30.0429325
G3 214.0 kQ 0.1998532+30.0450179
Gy 2.000 kQ 0.186692u=30.7257722
05 2.000 kQ 0.4291944+30.5167088
Gg 12,47 kQ  =0.2832444-30.4178438
G7 10.00 kQ  0.2352070+30.1729853
Cg 0.010 nF  0.4631123-j0.1010907
09 0.010 nF 0.4199217-30.2285105
Ao 10000. 0.0000971+30.0001058

The circuit parameter nominal values and the

p2 with respect to the circuit parameters are

svpz
P

—t
-2.0971564+38.9101788
-8.4262893-31.6020173
2.2899989+30.8563859
-2.2215950-38.9730738
1.0913519+36.3913345
-2.7126559=35.1676651
1.1302431+32.5817394
5.7611653-30.4630128
5.1849374-32.5338697
0.0010032+30.0014338

The following describes some different single faults and their

obtained results.

(a) Single fault in G, (exact relative error = 0.32)

Diff.‘ = 0.1945216E-07

N — e

o

‘I-.-L~. = =




Fig. 6.4 2nd order high pass notch filter (Friend circuit).
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@y = 1.4291995-31,3568168

Calculated relative error = 0.3199999+j0.

Single fault in G2 (exact relative error
nirrz 2 0.1490755E-07

o, = 4.4014133-3J0.0438022

Calculated relative error = 10008.691+32.

Single fault in Gy (exact relative error
Diff3 = 0.1758195E-07

a3 2=0.1910450+3j0.0019013

Calculated relative error = 0.0190477+3j0.

Single fault in G, (exact relative error

Diff, = 0.234817T5E-07

[« 4

M 0.8690785+30.5924875
Calculated relative error = 0.0050252
Single fault in CB (exact relative error
Diffa =z 0.2734057E-07

¥g 2-2.8495944+30.82u48030

Calculated relative error = -0.1+30.0

Examole 5:

0
= 9999.0)

333323
= 0.019048)

0

= 0.0050251)

s =0.1)

Consider a Friend circuit realizing a 2nd order band pass filter

with center frequency of 1,0 kHz and a bandwidth of 100.0 Hz, Figure

6.5. The circuit parameter ncminal values and the sensitivities of Ip1

and sz with respect to the circuit parameters are listed below

( @2 7000 rad/sec).
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Fig. 6.5 2nd order band pass filter (Friend circuit).
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Ip1
Parameter(?l) Nominal Values Sp
G, 1.000 kK U.4141764+31.5810643  4.4141763+31.5810642 U
G, 400.0 k Q  3.2464605+31.8716715  3.2384681+31.9607132
c3 7.958 nF  =3.3304946-31.7259875 -3.3264983-31.7705083
Cy 7.958 nF  =3.3301424-31,7267483 -4.3261462-31.T7T12691 .
Ag 10000. 0.0003521-30.0007608 0.0003621-30.0007608 [ i

The following describes some different single faults and their !
obtained results.
(a) Single fault in G, (exact relative error = 9.0)
Di.ff'.l = 0.5665014E-08
@, =-3.4141764-11.5810642
Calculated relative error = 8.9999945+30.0000069
(b) Single fault in G, (exact relative error = 0.14286)
Diffz 2 0.2634178E-08
o, 3-3.2384681-31.9607133
Calculated relative error = 0.1428571+30.0

(c¢) Single fault in C3 (exact relative error =z 9.0)
DiffB =z 0.8330002E-08
at3 a 4,3264983+31,7705083
Calculated relative error = 8.999995+3j0.0000010
(d) Single fault in C, (exact relative error = -0.12027)
Diff), = 0.2082501E-08
) ==4.3261862+31.7712691

Calculated relative error s =0.1203599+30.0

Example 6:
Consider a uUth order Butterworth low pass filter using the FDNR
concept [25], Figure 6.6, with 3dB cutoff frequency of 1.0 kHz. The

circuit parameter nominal values, and the sensitivities of Ip1 and vﬁz

L-—JL-—-—&L-——-—‘L—-*—’

s 'k)!“' .
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Fig. 6.6 u4th order Butterworth low pass filter using
the FDNR concept.
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with respect to the circuit parameters are listed below ( ®ws 7000

rad/sec).

Paranetor(?iz Nominal Values

G, 1.000 k Q
G, 1.000 kQ
Gy 1.000 kQ
Gg 1.000 kQ
Gg 1.000 kQ
G, 29.30 kQ
c9 0.010BF
Clo 0.010 B F
Ca1 34.93 of
Ci2 34.93 oFf
c13 54,22 oF
c1u 54.22 nF
A15 10000.

A 10000.

Ayq 10000.

Ag 10000.

!

—
«3.4247676-30.9295328
-3.4235955-30.9295252

3.4235955+ 30.9295252
<0.4165778=31.2889606
<0.4169069-31.2885058

0.4169069+31.2885057
-3,2199468-31.9502319
0.3211149-30.0476300
=0.0562338-30.3791203
0.1136902+3J0.1588125
3.4254839+30.9268999
3.4239223+30.9310275
3.4239223+30.9310275
0.1466997+31.2888574
«0.0000768+30.0029860
«0.0007301-J0.0000184
=0 .0005957+30.00047T2
-0.0001812-30.0002260

P2
——
0.1358290+30.7569033
0.1357217+30.7566731
=0.1357217-30.7566731
1.2634121+31.0013481
1.2634377+31.0006804
-1.2634376-31.0006804
1.2667378+31.0014152
01.311967+J0.7523334
<0.1117670-30. 1548958
0.1133559+j0.1588170
-0.1364110-30.7567992
=0.1354578-30.7568765
<0.1354578-30.7568765
-1.26346U6-31.0011655
0.0005918-30.0002621
0.0000641+30.0001447
0.0002748-30.0008658
0.0003286+30.0001042

The following describes some different single faults with their

obtained results.

(a)

(b)

(e)

Single fault in G7 (exact relative error = 0.95333)

Diff7 2 0.1002608E-03

oq 2=0,2670898-31.0012017

Calculated relative error = 0.953617-30.000120

Single fault in 09 (exact relative error = 1.0)

Diffg = 0.1101016E-02

ag = 0.111767+J0. 1548958

Calculated relative error =z 1.00011U454+30.0001555

Single fault in C,, (exact relative error = -0.3)

Diff1° = 0,5822352E-02

@ g * 0.8863097-10.1588125
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Calculated relative error =z -0.3009755-30.0007091
(d) Single fault in 68 (exact relative error sz -0.19333)
Diffg = 0.996987TE-04
@g = 0.8688033-30.7523333
Calculated relative error = -0.193338&&.1.0000181

From these examples, we find that in some circuits, e.g., circuits
containing op-amps, we may not be able to detect single faults due to
some equal sensitivity values. The same situation happens when we have

two or more parallel elements. However, in this case if they are

different types, they can be separated.
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CHAPTER 7
CONCLUSION

A method has been presented for the calculation of large circuit
camponent variations, based on the adjoint circuit concept. The method
requires that the node voltages of the circuit be available. In this
case, there exists a linear relationship between large parameter
deviations and the test port measurements in a linear circuit. Given
these measurements, the values of the components can be easily computed
by solving a set of linear algebraic equations. Furthermore, the
formulation of the method allows one to determine necessary and
sufficient test conditions re@red to determine the component values.
The accuracy of the method in the presence of measurement errors depends
upon the structure of the circuit and its component values.

In the absence of sufficient test measurements due to the
inaccessibilty of some nodes in a circuit, the method could be used to
isolate ths faulty components to some subset of the components in the
circuit. It has been shown that simple input and output port voltage
measurements are enough to determine a single fault. The same approach
is implemented at the block level, where the faulty bdlocks in a circuit
can be identified.

The same approach could be used to identify faults in circuits with
some nonlinear components. Special choice of the adjoint circuits

enables one to isolate the linear elements from the nonlinear elements

[P T
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allowing one to obtain a different bias point on the I-V characteristic
of every nonlinear element.

These results were used for the fault analysis of some analog
circuit examples, and the results show excellent agreement with the
theory. .

More investigation is needed for the detection of multiple faults
given a limited mumber of accessible nodes, especially when some of the
nonfaulty elements are within a specified tolerance of their nominal
values. Also, necessary and sufficient conditions need to be determined
in order to locate these multiple faults, rather than to isolate them in
a subgroup of the circuit elements. Furthermore, the application of the
single fault algorithm on active circuits with nonzero-toleranced
parameters needs to be applied to some examples in c;rder to compare the
algoritm computationally with the fault dictionary approach. Finally,
a comprehsnsive computer program needs to be written for the single and

multiple fault detection and isolation that takes care of all the

practical situations that exist in practice.
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